What is 5G?

What is 5G/IMT-2020?

40 years of mobile generations

Innovation and change are major drivers for technology-based industries. The evolution of mobile networks is constant, adjusting and innovating in cyclical patterns. An old technology will disappear when a new one emerges. Less effective networks are taken out of commission to allow their more powerful successor to flourish. 5G is the fifth and latest generation of mobile technology, following through on its predecessors: 1G (~1980), 2G (~1990), 3G (~2000) and 4G (~2010).

1980-2020: 40 years of mobile generations
Source: IDATE DigiWorld, state of LTE & 5G markets, July 2018

5G objectives, requirements and scenarios

There is a broad consensus on what kind of performance 5G technology will have to support.

Objectives

5G will not just be about improved throughputs but also about providing the right throughput for the right user, on average and not just in theory. Although 4G has improved throughputs considerably compared to 3G, there is a sizeable difference between peak and average throughputs. As an example, with 5G, the target is to provide 50 Mbps connectivity everywhere, thus addressing both coverage and capacity issues.

  • 5G will need to suit a whole raft of services, ranging from consumer services to any of the industry’s vertical markets, by way of public safety organisations. Whereas 4G was conceived purely as a mobile broadband technology, 5G will have to be flexible enough to allow new services or business models to emerge.
  • 5G will thus have to function on any kind of spectrum, be it low or very high frequency bands, shared, licensed or unlicensed. It will need to work more easily with other technologies (terrestrial or not), perform perfectly in both densely populated and rural areas, and operate as effectively in traditional cellular mode as in new configurations – such as mesh/relay mode – when necessary.
  • 5G will also have, of course, to be more spectrally efficient but also more energy efficient to allow new use cases, new devices or objects to emerge and communicate with the resources available. Together with energy efficiency, cost efficiency will play an important role in 5G.

Requirements

In terms of concrete specifications the EU-funded project, METIS, defined 5G as a technology that can support mobile data volumes that are 1,000 times higher per area; 10 to 100 times more connected devices; typical user data rates that are 10 to 100 times higher; 10 times longer battery life for low power MMC; and five times lower end-to-end latency.

Scenarios

ITU-R describes three usage scenarios for IMT-2020 systems. FWA (Fixed Wireless Access) or WTTH (Wireless To The Home) is an additional usage scenario.

  • eMBB (enhanced Mobile Broadband)
  • mMTC (Massive machine Type Communications)
  • uRLLC (ultra Reliable Low Latency Communications)
IMT-2020 usage scenarios
Source: IDATE DigiWorld Supply-side offers, July 2018
  • FWA or WTTH is about proving connectivity to homes thanks to wireless networks rather than fixed networks.

5G technology enablers

Key technologies for 5G include the use of mmwaves, massive MIMO, additional new waveforms, spectrum sharing, multi Radio Access Technologies (RAT) integration, Ultra-Wide Band (UWB) radio modules, Cloud or Centralised RAN, Device to Device (D2D), Network Function Virtualisation (NFV), Software Defined Network (SDN), Mobile Edge Computing (MEC) and Network Slicing.

SDN-NFV (Network virtualisation)

    • Network virtualisation is the uncoupling of network hardware and software. It enables network functions to be run on traditional IT servers instead of dedicated hardware. Beyond the direct benefits of running network functions on hardware produced in volume, the virtualisation of a network brings greater flexibility in terms of network architecture.
    • SDN (Software Defined Network) is a concept based on the separation of the control plane and data plane of the network architecture.
      The SDN architecture built around a centralised control layer, using control software.
    • NFV (Network Function Virtualisation) is a concept to virtualise i.e. implement in software form network services using standardised servers (that currently operate on proprietary hardware).

HetNets

Heterogeneous networks, also known as HetNets, refer to the provision of mobile services on a combination of different technologies and sites (2G, 3G, 4G, WiFi). Heterogeneous Networks are wireless networks comprised of different types of base stations and wireless technologies. Hetnets manage macro, small cells, Distributed Antenna Systems (DAS) and Wi-Fi hotspots if any.

Massive MIMO/Beamforming

  • Multiple Input Multiple Output (MIMO) technology is key to improving spatial efficiency. Massive MIMO uses a very large number of service antennas (hundreds or thousands) that are operated in a fully consistent and adaptive fashion. Multiple User (MU-MIMO) form offers a dual advantage: a base station that can communicate simultaneously with multiple user equipment on the same frequencies and the ability to send multiple data streams.
  • Beamforming is about controlling and reducing interference. It requires MIMO antennae and is able to broadcast the same signal using multiple antennae. Beamforming uses signal reflection and diffusion to perform communications in non-line-of-sight (NLOS) situations.
    The combination of massive MIMO and beamforming techniques creates the ability to pack more elements and concentrate the transmission’s path towards a receiver, and thus increase coverage with a single antenna at a time when antenna elements are becoming significantly smaller.

Network slicing

Network slicing is a concept that derives from the virtualisation of network functions and that aims at making services RAT-agnostic. The idea behind it is that, working with the same hardware, different needs (use case, or users with specific needs) could be served. It is also a support for the multiple air interfaces, which can include the LTE air interface as well as a newly developed air interface.

It is relatively well accepted within the industry that network slicing should really focus on the full integration of LTE-A with 5G but only bring limited interworking with 2G and 3G, which are native circuit- switched radio access technology, whose full support would be complicated and counter productive

Network Slicing has become a fundamental 5G technology element enabling a wide range of use cases and providing customised connectivity. It is thus possible to provide very low latencies in some network slices and very high bandwidth in other slices.

 

Cm & Mmwaves use

  • Studies are ongoing in 24-86 GHz spectrum ranges for 5G use. The 25-27.7 GHz, 31.8-33.4 GHz, 37-43.5 GHz, 45.5-50.2 GHz, 50.4-52.6 GHz, 66-79 GHz and 81-86 GHz frequencies are particular targets.

High frequencies are needed to deliver data rates above 1 Gbps. Spectrum above 20 GHz is highly coveted at regional or national levels. High frequencies with large bandwidth blocks are indeed required to address new data needs for high end user data rates (10-20 Gbps) delivered by 5G. Above 20 GHz, bandwidths available are of the magnitude of 1 GHz or more what is sufficient for almost all eMBB applications including mission-critical services.

Use of high frequencies by the mobile sector requires several technical adjustments mainly due to propagation characteristics and wavelength.

Use of high frequencies implies result in many consequences with regard to deployment:

  • Point-to-Point paths are possible even in Non Line of Sight (NLOS) conditions. Point to multi-Point links are quite complicated and strictly limited to approx. 200 m.
  • NLOS schemes are really binding but not impossible.
  • Below 30 GHz, communication from the outside to the inside, communication in NLOS situations and communication from the inside to the outside are technically feasible with small adjustments.
  • Between 30 and 60 GHz, communications from the outside to the inside are the only ones feasible technically. Use of beamforming and multiple high gain antennas is required.
  • Above 60 GHz, inside communications are the only ones feasible if they benefit from large spectrum channels.

Use of frequencies above 6 GHz by mobile services is indeed characterised by:

  • The opportunity to find bands with larger channels (around 1 GHz in considered bands)
  • Ranges at very high frequencies are significantly reduced. This eases and calls for reuse of spectrum and use of spectrum sharing. These frequencies will mainly remain focused on providing capacity.
  • Smaller antennas – they can be more easily installed – and massive MIMO. Combined with beamforming, massive MIMO will likely improve spatial efficiency. Beamtracking is expected to be used on a longer term.
  • The opportunity to use millimetre waves in NLOS situations
Source: IDATE DigiWorld, World LTE and 5G markets, July 2018
5G technology enablers
Source: IDATE DigiWorld, World LTE and 5G markets, July 2018

5G standardisation

Standardising 5G and identifying/allocating 5G spectrum are key elements to ensure 5G deployment in due time.

3GPP should be the core of the 5G standardization related to mobile technologies e.g. 3GPP RAN, CT and SA groups. In addition, the 5G Infrastructure PPP members will also contribute to a wide range of other standardization bodies (IETF, ETSI, ONF, Open Daylight, OPNFV, Open Stack…).

For the first time in the mobile industry, the standardization process of 5G has been sped up, in particular because of strong pressures on the 3GPP from non-European actors. At the MWC’17, a number of leading MNOs (AT&T, NTT DOCOMO, South Korea Telecom (SKT), Vodafone Group, BT Group, Telstra, KT Corp, KDDI, Telia Company, Swisscom, Telecom Italia, Etisalat, Sprint, LGUplus and Deutsche Telekom) and equipment vendors (Ericsson, Qualcomm Technologies, Intel, Vivo, LG Electronics, Huawei and ZTE) called for an acceleration of the 5G New Radio (5G NR) standardization process (i.e. Release 15)

The objective was to enable large-scale trials in 2019 instead of 2020. The group also suggested the addition of an intermediate milestone (set by the end of 2017) to complete specification documents. Verizon, Samsung and Nokia opposed that decision. Following an agreement in 3GPP in March 2017, the Non StandAlone (NSA) implementation of 5G New Radio (NR) was moved forward to December 2017. This intermediate milestone is key to enable 3GPP-based large-scale trials and deployments as early as 2019 instead of 2020 as initially planned. The StandAlone Release15 was approved in June 2018. The late drop was completed in June 2019.

A complete 5G standard that fully satisfies all of the requirements of International Telecommunications Union was completed in June 2020 (Release 16), with a slight delay due to the covid-19 pandemic. Release 16 focuses on the verticals’ needs (Automotive, Industrial IoT and Operation in unlicensed bands). Release 16 delivered generic system improvements and enhancements, particularly positioning MIMO enhancements and power consumption enhancements. Release 17 is expected in 2021.

5G Spectrum

As agreed at WRC-15, and considered in view of WRC-19 (Agenda Item 1.13) 5G will likely use low, medium and high frequency bands and especially:

  • 600/700/800 MHz
  • 3.4-4.2 GHz
  • 24-71 GHz
    • the 26 GHz band received a global 5G identification through a time-delay mechanism. Member states agreed on an out-of-band emission limit of -33 dBW/200 MHz for 5G base stations until 2027. After 2027, the limit is more restrictive to -39 dBW/200 MHz.

Table 1: mmWave bands for IMT


Source: based on ITU WRC-15 final Acts, Resolution 238 and WRC-19 provisional Final Acts

 

At WRC-23, an IMT identification could be approved for 3.3-3.4 GHz, 3.6-3.8 GHz, 6425-7125 GHz and 10.1-10.5 GHz. After 2023, the status of the 470-694 MHz frequencies could be examined: at WRC-15 it was decided that the frequencies would remain under its global current broadcasting allocation in region 1 along with its co-primary allocation and secondary allocation to fixed and mobile regions 2 (Asia) and 3 (the Americas).

Frequencies where appropriate sharing and compatibility studies must be conducted in time for WRC-19 (WRC-19 Agenda Item 1.13)
Identification for IMT Additional Allocation
24.25-27.5 GHz 24.25-25.25 GHz
(31.8-33.4 GHz)
37-40.5 GHz
40.5-42.5 GHz
42.5-43.5 GHz
45.5-47 GHz
47-47.2 GHz
50.4-52.6 GHz
50.4-52.6 GHz
66-76 GHz
81-86 GHz
Source: based on ITU WRC-15 final Acts, Resolution 238

Latest News in Europe

5G Supply Market Trends: Second Stakeholder Workshop on 19 May 2021

The workshop is the second stakeholder workshop in the 5G Supply Market Trends project that has been launched by the European Commission in September 2020. The first stakeholder workshop on 5G Equipment and Supply Market Trends and Perspectives of Open Initiatives was held on 16 December 2020. The study on 5G Supply Market Trends aims […]

Spain completes 3.5 GHz spectrum assignment for 5G in a day

Telefonica and Orange were the only two bidders to apply to participate in the SMRA bidding at the end of December 2020

Sweden completes 3.5 GHz spectrum auction for 5G in one day

The auction raised 2.32 billion SEK (226 million EUR)

The 5G Greek auction raised 372.3 million EUR

The long-awaited multi-band 5G auction in Greece ended on December 16, 2020 after six rounds of bidding. It raised 372.3 million EUR just exceeding targets of 367 million EUR. The three current MNOs got spectrum in all bands for sale (700 MHz, 2 GHz, 3.4-3.8 GHz and 26 GHz). Vodafone spent the most with 130.2 […]

Free Mobile launched commercial 5G services in France

The operator launched 5G at the price of 4G

Slovak Telekom launches 5G

The network is available in eight districts of Bratislava

5G commercial launches in France

Orange, Bouygues Telecom and SFR have launched 5G commercial services in France

Slovakia’s regulator auctioned 700 MHz spectrum

The sale raised 100.23 million EUR

HT launches 5G in Croatia

Hrvatski Telekom (HT) switched on Croatia’s first commercial 5G network

all news in Europe
Subscribe to our mailing list