This study was carried out for the European Commission by IDATE DigiWorld

Authors: Frédéric PUJOL, Carole MANERO and Tarek JAFFAL

80042 – January 2019

Internal identification

Contract number: LC-00838363

SMART number 2018/0024

DISCLAIMER

By the European Commission, Directorate-General of Communications Networks, Content & Technology.

The information and views set out in this publication are those of the author(s) and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein.

© European Union, 2018. All rights reserved. Certain parts are licensed under conditions to the EU.
Contents

1. Executive summary ... 6
 1.1. Status of 5G deployment in Europe and assessment against the 5G Action Plan 6
 1.2. Framework conditions and public measures in the context of the 5G Action Plan 7

2. Recent major developments .. 9
 2.1. Latest developments at EU level .. 9
 2.2. Progress of national strategies and plans ... 9
 2.3. 5G scoreboard ... 11
 2.3.1. 5G scoreboard – EU-28 .. 11
 2.3.2. 5G scoreboard – International ... 12
 2.4. Announcements of first commercial launches .. 13
 2.4.1. Elisa (Finland and Estonia) .. 13
 2.4.2. Ooredoo (Qatar) .. 13
 2.4.3. USA: Verizon 5G Home service launched on October 1st, 2018 13
 2.4.4. South Korea .. 15
 2.4.5. Japan .. 15
 2.4.6. China .. 16
 2.5. 5G pre-commercial trials ... 18
 2.5.1. Analysis of the 171 trials registered so far ... 18
 2.5.2. Trial cities .. 21
 2.5.3. Digital cross-border corridors ... 22
 2.6. 5G cities ... 24
 2.7. Spectrum assignment by public authorities ... 26
 2.7.1. Review of spectrum assignment progress ... 26
 2.7.2. Spectrum availability for 5G use .. 28
 2.8. Product/market developments .. 32
 2.8.1. Chipsets ... 32
 2.8.2. Devices .. 34
 2.8.3. Infrastructure ecosystem ... 38

3. Annexes .. 41
 3.1. National strategies and plans by MS ... 41
 3.1.1. Austria .. 41
 3.1.2. Belgium .. 41
 3.1.3. Bulgaria ... 42
 3.1.4. Croatia .. 42
 3.1.5. Cyprus .. 42
 3.1.6. Czech Republic .. 42
 3.1.7. Denmark .. 43
 3.1.8. Estonia ... 43
 3.1.9. Finland ... 43
 3.1.10. France .. 43
 3.1.11. Germany ... 45
3.1.12. Greece... 47
3.1.13. Hungary... 47
3.1.14. Ireland... 48
3.1.15. Italy... 49
3.1.16. Latvia.. 51
3.1.17. Lithuania.. 51
3.1.18. Luxembourg.. 51
3.1.19. Malta... 52
3.1.20. Netherlands.. 52
3.1.21. Poland... 52
3.1.22. Portugal... 53
3.1.23. Romania... 53
3.1.24. Slovakia... 53
3.1.25. Slovenia... 53
3.1.26. Spain.. 54
3.1.27. Sweden... 55
3.1.28. UK... 55
3.2. 5G strategy and pioneer bands follow-up.. 57
3.3. International developments/trials .. 58
3.3.1. USA.. 58
3.3.2. China.. 59
3.3.3. South Korea... 59
3.3.4. Japan.. 60
3.3.5. Other countries... 60
3.4. Number of cell sites for 5G trials ... 62
3.5. 5G network equipment –main manufacturers.. 63
3.5.1. Ericsson... 63
3.5.2. Huawei.. 63
3.5.3. Nokia.. 63
3.5.4. Samsung... 64
3.5.5. ZTE... 65
Tables & Figures

Table 1: Key trends related to 5G Action Plan measures ...7
Table 2: Assessment of 5G AP analysis criteria ..8
Table 3: Screen shot of the trials base in the European 5G Observatory18
Table 4: 5G CAM cross-border corridors ...23
Table 5: Availability of 700 MHz spectrum in Member States (as at 15 December 2018) ...29
Table 6: Availability of 3.4-3.8 GHz spectrum in Member States (as at 15 December 2018) .31
Table 7: Availability of 26 GHz spectrum in Member States (as at 15 December 2018)32
Table 8: Presentation of announced 5G chipsets ...33
Table 9: List of 5G devices announced or presented ...37
Table 10: Infrastructure equipment 5G solutions from major vendors39
Table 11: 5G infrastructure contracts ...40
Table 12: 5G strategy and pioneer bands follow-up for EU-28 most advanced countries57
Table 13: Number of cell sites for 5G trials ...62

Figure 1: 5G scoreboard – EU-28 ...11
Figure 2: Scoreboard – International markets ..12
Figure 3: Verticals tested in 5G trials ..19
Figure 4: 5G trials by country ..19
Figure 5: Frequency bands tested ..20
Figure 6: Status of 5G trials in Europe ..20
Figure 7: Level of maturity of tests ...21
Figure 8: Layout of QTM052 mm-wave antenna module in a smartphone form factor34
Figure 9: The steps a device takes to market ...35
Figure 10: Huawei and Samsung 5G home routers for 5G Fixed Wireless Access35
Figure 11: Qualcomm development platform used for demonstrating OTA call handover at 37 GHz ..35
Figure 12: Motorola Z3 functioning with a 5G mod ..36
Figure 13: LG will work with sprint to launch its 1st 5G smartphone in the US36
Figure 14: 5G timeline in France ..45
Figure 15: 5G strategy in 5 steps ..46
Figure 16: Key milestones of 5G strategy for Germany ..46
Figure 17: 5G research centers in Germany ..46
Figure 18: 5G timeline in Germany ..47
Figure 19: 5G timeline in Italy ..50
Figure 20: 5G timeline in Spain ..55
Figure 21: 5G timeline in the UK ..56
Figure 22: Presentation of Ericsson 5G solution ..63
Figure 23: Nokia AirScale Radio Access for 5G ...64
Figure 24: Samsung 5G products evolution ..64
Figure 25: Displaying of Samsung 5G FWA solution for the American market65
1. Executive summary

This is the second quarterly report of the 5G Observatory for the fourth quarter of 2018.

1.1. Status of 5G deployment in Europe and assessment against the 5G Action Plan

On 14 September 2016, the Commission launched the 5G Action Plan to boost EU efforts for the deployment of 5G infrastructures and services across the Digital Single Market by 2020, and comprehensive coverage by 2025. The action plan sets out a clear roadmap for public and private investment on 5G infrastructure in the EU.

The European 5G Observatory provides updates on all market developments in EU-28, including actions undertaken by the private and public sectors, in the field of 5G. It also presents an analysis of the strategic implications of the 5G Action Plan and other public policy objectives.

European mobile operators have been working for two years with equipment manufacturers and vertical players on various trials in order to validate 5G’s capabilities. At mid-December 2018, it is clear that they are heavily involved in 5G testing with 138 trials reported in EU-28 countries.

In the coming months, European mobile operators should prepare the deployment phase and will be able to perform tests in “real” conditions as the first 5G smartphones are expected to be available in the first half of 2019. In June 2018, Elisa announced availability of a commercial 5G network in Tampere, Finland and Estonia’s capital city of Tallinn. In late 2018, Orange started to announce detailed plans regarding 5G network deployment and commercial launch. In 2019, 5G deployments are expected with tens of base stations in many cities across Europe. Various operators (Vodafone, EE, Orange, DT…) have already announced deployments in many European cities. Contracts with network suppliers for 5G equipment should be signed in 2019 in order to allow full commercial service in 2020.

In other regions of the world, 5G is a very hot topic and Qatar’s Ooredoo announced 5G commercial service in May 2018. Nevertheless, it should be noted that availability of mobile 5G devices is expected in the first half of 2019 and that only prototypes are available today. Verizon has launched its fixed wireless access service early October in four cities in the USA based on a proprietary standard. AT&T also announced the launch of a mobile 5G service based on the 3GPP standard. The service is restricted to friendly customers until the first quarter of 2019. The three South Korean operators agreed to launch 5G services on the same day in March 2019 and already announced limited commercial service targeting the enterprise market in early December 2018. China and Japan are already very active in the 5G field and operators will commercially launch 5G in 2019-2020.

Key trends related to the 5G Action Plan measures covering 5G roadmaps, spectrum, early deployment and pan-European multi-stakeholder trials are presented in Table 1:

1 Friendly customers are employees of the mobile operator or people using the service for no charge in exchange of reports on the service
Table 1:
Key trends related to 5G Action Plan measures

<table>
<thead>
<tr>
<th>5G AP measures</th>
<th>Key trends</th>
</tr>
</thead>
</table>
| Announcements by operators, service providers or users | 5G commercial launches (network only): Elisa (Finland and Estonia) in June 2018, Ooredoo (Qatar) in May 2018. South Korean MNOs in December 2018. AT&T in December 2018 (end user devices in Q1 2019).
5G commercial launches (network and end user devices): Verizon (USA) in October 2018.
No clear indication of 5G investments by mobile operators.
5G planned launches: South Korea in March 2019, Japan in August 2020 (Pre-launches in 2019, notably for NTT DoCoMo autumn 2019), AT&T (USA) in 2019. |
| Promote early deployment in major urban areas and along major transport paths | 138 trials announced in EU-28. 33 trials in Russia, Turkey, San Marino, Switzerland and Norway.
In 2017 and 2018, 10 digital cross-border corridors were announced and established for live tests of 5G in the EU. 3 large-scale projects have been selected on these corridors (5G Carmen, 5G CroCo, 5G Mobix). |
| Promote pan-European multi-stakeholder trials as catalysts to turn technological innovation into full business solutions | Large trials are part of H2020 phase 3 projects. Three projects (5G EVE, 5G VINNI, 5GENESIS) started on the 1st July 2018 and run for 3 years implementing and testing advanced 5G infrastructures in Europe (15 to 20 M Euro investment). |

Source: IDATE DigiWorld – December 2018

1.2. Framework conditions and public measures in the context of the 5G Action Plan

Public authorities have started to take measures to facilitate the introduction of 5G. This ranges from national 5G strategies to the completion or preparation of 5G spectrum assignments.

The European Electronic Communications Code, which was agreed in the first half of 2018, sets important framework conditions as regards 5G investment in the EU. In particular, MS are required to make 5G pioneer bands available by end of 2020 with investment certainty and predictability for at least 20 years in terms of spectrum individual licensing. Moreover, it establishes a voluntary peer review for the consistent assignment of spectrum across the EU.

The 5G Action Plan also sets out key targets to be achieved by Member States on the roadmap to 5G. The first one aims at unlocking bottlenecks including identification of spectrum for the initial launch of 5G (the pioneer bands identified by RSPG). The second target was the identification of a full set of spectrum bands for 5G by the end of 2017 and working toward an approach for the authorisation of specific bands above 6 GHz.

At mid-December 2018, the most tested frequency band in Europe is by far the 3.6 GHz band. The 26 GHz band is starting to gain traction.
Table 2: Assessment of 5G AP analysis criteria

<table>
<thead>
<tr>
<th>5G AP analysis criteria</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadmaps and priorities for a coordinated 5G deployment</td>
<td>The European Commission published a guidance document for national 5G strategies and roadmaps. Nine MSs published specific national 5G roadmaps (Austria, Finland, France, Germany, Luxembourg, Spain, Sweden, The Netherlands, and the UK). Thirteen EU MSs have published national 5G roadmaps or global strategy documents: Austria, Denmark, France, Germany, Italy, Luxembourg, Malta, Poland, Romania, Spain, Sweden, The Netherlands and the UK. Twelve EU MSs have launched public consultations on 5G spectrum/strategy.</td>
</tr>
<tr>
<td>Make pioneer spectrum bands available for 5G use ahead of WRC-19</td>
<td>Member States are required to authorise the 700 MHz band by 2020, unless there are justified reasons for delaying it until mid-2022 at the latest. In twelve Member States at least one spectrum auction is complete (as at December 15th, 2018). Three 5G spectrum auctions took place in Q4 2018: • Finland: 3.4-3.8 GHz, September 26th 2018 • Italy: 3.6-3.8 GHz and 26 GHz, September 2018 • Sweden: 700 MHz December 4th, 2018 (3.4-3.8 GHz in 2019) In eleven MSs at least one spectrum auction is scheduled for 2019.</td>
</tr>
<tr>
<td>Spectrum: usage of 5G pioneer bands and/or of other bands identified by the RSPG</td>
<td>Usage: no commercial usage of 5G spectrum yet in EU-28 (Elisa launched its 5G network in Finland but services and devices were not available at the end of 2018)</td>
</tr>
<tr>
<td>Service verticals: feasibility of vertical use cases based on deals inked with key vertical players</td>
<td>Media & Entertainment: 30 trials Transport: 23 trials Automotive: 17 trials Other verticals: Industry 4.0, Agriculture, Smart cities, smart buildings, eHealth, Public Safety...</td>
</tr>
<tr>
<td>Top 10 European countries where trials are organised</td>
<td>Spain, France, Germany, Italy, UK, Finland, Estonia, Netherlands, Portugal, Romania</td>
</tr>
<tr>
<td>Technologies (Non-Stand Alone, Stand Alone…)</td>
<td>Non-Stand Alone 5G (3GPP Release 15) for all mobile operators except Verizon in the USA with a proprietary standard: Verizon 5G Technical Forum standard.</td>
</tr>
<tr>
<td>Functionalities tested: virtual networks/edge computing, broadcast/streaming, Heterogeneous Networks...</td>
<td>Mainly throughput and latency are tested in the first trials in Europe. The media and entertainment vertical is the most important one among the reported trials.</td>
</tr>
</tbody>
</table>

Source: IDATE DigiWorld – December 2018

2 Consultations in eight countries (Germany, Greece, Luxembourg, Malta, Poland, Slovakia, Slovenia and the UK) are now closed (15 December 2018). Process is ongoing in four MSs (Bulgaria, France, Lithuania and Romania).

3 Harmonised technical conditions in line with Commission Decision to be adopted by end of January 2019
2. Recent major developments

2.1. Latest developments at EU level

5G is progressing well in Europe. The process has significantly accelerated since year-end 2017. Ambitious goals were set at European level since 2016. The European Commission’s action plan of 14 Sept. 2016 confirmed by the Member States in December 2017 targets the commercial rollout of 5G in one major city in every Member State by 2020 and the coverage of the main urban areas and transport routes by 2025.

The European Union regulatory framework for electronic communications has recently been reviewed and the new European Electronic Communications Code (EECC) will come into force at the beginning of 2019 and Member States will have two years to transpose it into national law. This will give a strong push to 5G and high-speed broadband networks as a whole.

The new Electronic Communications Code will facilitate investments and entry into the market for wireless communications operators by:

- enhancing the deployment of 5G networks by ensuring the availability of new necessary 5G radio spectrum by the end of 2020 in the EU;
- providing operators with investment certainty and predictability for at least 20 years in terms of spectrum individual licensing;
- ensuring better coordination of planned radio spectrum assignments;
- supporting the entry of new spectrum users and economic operators through increased recourse to shared use of radio spectrum and general authorisation where possible, as well as easier spectrum trading and leasing;
- facilitating the deployment of 5G networks by introducing a light authorisation regime for small-area wireless access points;
- facilitating the roll-out of new, very high capacity fixed networks by making rules for co-investment more predictable and promoting risk sharing in the deployment of very high capacity networks;
- promoting sustainable competition for the benefit of consumers, with a regulatory emphasis on the real bottlenecks, such as wiring, ducts and cables inside buildings; and a specific regulatory regime for wholesale only operators.
- ensuring close cooperation between the Commission and the Body of European Regulators for Electronic Communications (BEREC), including in supervising measures related to the new access provisions on co-investment and symmetric regulation.

All Member States are required to adopt 5G roadmaps regarding the licensing of the 700 MHz band. Nine MSs have assigned or are about (before year-end 2018) to assign 5G spectrum (mainly 3.4-3.8 GHz frequencies).

2.2. Progress of national strategies and plans

Most EU MSs started to examine 5G strategic issues through public consultations, often followed by 5G strategy documents in 2016 or 2017. The 5G strategies generally result from a national broadband strategy defined earlier in 2015 or 2016 and lasting up to 2020.
In order to facilitate a consistent approach across Europe, the European Commission has published in November 2018 a Report\(^4\) summarising the best practices and common elements that could be considered for national 5G strategies. The work done with experts from EU Member States covers key issues that range from deployment targets, spectrum and small cells to public financing programmes and 5G innovation support.

The national 5G strategies adopted to date have a number of facets as the 5G roadmaps set concrete targets, define priority areas and milestones. A spectrum section provides details on 5G potential auctions to be held in different pioneer bands, and trial licenses are often considered. Funding methods are presented and discussed, and measures to stimulate and mobilise key players from the telecom and vertical industries are also considered.

The review of progress made towards 5G market introduction shows various stages. Nine MSs published precise national 5G roadmaps (Austria, Finland, France, Germany, Luxembourg, Spain, Sweden, The Netherlands, and the UK) whereas thirteen EU MSs have published national 5G roadmaps or global strategy documents: Austria, Denmark, France, Germany, Italy, Luxembourg, Malta, Poland, Romania, Spain, Sweden, The Netherlands and the UK. In 2019, eight Member States will publish their 5G strategies: Cyprus (1/19), Denmark (2/19), Malta (3/19), Hungary (4/19), Portugal (7/19), Croatia (Q4/19), Greece (12/19) and Lithuania (by end of ’19).

Four EU MSs have launched new public consultations during Q4 2018 on 5G spectrum (Bulgaria\(^5\), France\(^6\), Lithuania\(^7\) and Romania\(^8\)). In other MSs the reflection has just started; countries did not publish a 5G roadmap or begin a public consultation, but awarded trial licenses or organised round tables: Croatia, Finland and Slovenia. The remaining MSs are still at the internal reflecting phase: Czech Rep., Estonia, Greece, Hungary, Ireland, Latvia and Lithuania.

5G strategies and plans by Member States are detailed in section 3.1 of the annex of this report.

\(^4\) https://circabc.europa.eu/ui/group/7da1d333-3dda-4a40-9d7c-0013e0c51c98/library/3179b0e0-061d-4eac-9742-e391d63b5cc6/details
\(^5\) The Bulgaria 5G strategy plan mentions the 700 MHz and 3.6 GHz bands
\(^6\) In October 2018, ARCEP launched a consultation for the 1.5 GHz, 3.6 GHz and 26 GHz bands
\(^7\) The consultation was for the 3.6 GHz band
\(^8\) In December 2018, the Romanian regulator, ANCOM, has issued a consultation about its action plan for 2019. It covers the 700 MHz, 800 MHz, 1500 MHz, 2.6 GHz, and 3.4 – 3.6 GHz bands for 5G services
2.3. 5G scoreboard

2.3.1. 5G scoreboard – EU-28

The 5G scoreboard summarizes the status of 5G trials, spectrum plans, measures on coverage, roadmaps and national plans in EU-28.

Figure 1: 5G scoreboard – EU-28

Scoreboard – EU 28 (January 2019)

- 5G roadmaps and national plans: 9
- 5G Pioneer Spectrum:
 - Assigned and usable in 2020: 6.7%
 - Assigned but not usable in 2020: 700 MHz: 10.7%, 3.4-3.8 GHz: 11.5%
 - Not assigned: 26 GHz: 3.5%
- 138 5G trials in the 28 MSs
- 35 5G-enabled Cities identified
- 10 “digital cross-border corridors” established

Source: IDATE DigiWorld
2.3.2. 5G scoreboard – International

The international version of the scoreboard details trials and timelines for 5G commercial launches and spectrum plans world-wide.

Figure 2: Scoreboard – International markets

Scoreboard – International markets (January 2019)

- **USA**: October 2018 for Verizon (Fixed Wireless Access – not 3GPP), December 2018 for AT&T (network only)
- **South Korea**: December 2018 (5G service for enterprise only)
- **Europe**: Elisa in June 2018 (network only)

- **China**: 2019 for pre-commercial, 2020 for true commercial launch. China Mobile ahead, other 2 players not so far
- **Japan**: Planned in August 2020 for the Olympic Games
- **South Korea**: 5G joint commercial launch in March 2019 for the residential market
- **USA**: Planned for end-2018, 1S 2019 for AT&T. 2019 for T-Mobile, Sprint
- **Europe**: 5G launches by end of 2020 in all Member States (5G Action Plan)

5G COMMERCIAL LAUNCHES AND TIMETABLES

5G SPECTRUM

USA
- Spectrum plans disclosed in 2016: November 18 auctions for the 28 and 24 GHz bands, 24 GHz in 2019. Options considered for 3.7-4.2 GHz.
- Commercial launch planned by Verizon: 28 & 39 GHz, T-Mobile: 600 MHz, AT&T: 39 GHz, Sprint: 2.5 GHz

CHINA
- Spectrum for 5G national trials until June 2020: 3.4-3.5 GHz for China Telecom, 3.5-3.6 GHz for China Unicom. China Mobile: 260 MHz in 2.6 GHz (2515-2675 MHz) and 4.8 GHz (4800-4900 MHz)

SOUTH KOREA
- 3.4-3.8 GHz (280 MHz available for 5G) and 28 GHz (2400 MHz available for 5G: 800 MHz for each operator)

JAPAN
- 28 GHz (27.5-29.5 GHz) band for 5G. The MIC has also approved the 3.6-4.2 GHz and the 4.4-4.9 GHz

EUROPE
- 2020 deadline for assignments of 5G pioneer bands in the EU
- Spectrum assigned and usable in 2020 in 8 Member States: 10.7% in the 700 MHz band, 11.5% in the 3.4-3.8 GHz band and 3.5% in the 26 GHz band

Source: IDATE DigiWorld
2.4. Announcements of first commercial launches

5G is heating up in the world. Verizon launched a Fixed Wireless Access commercial service on October 1st, 2018. Some players have already announced their plans whereas Elisa and Ooredoo claim they have commercially launched 5G.

2.4.1. Elisa (Finland and Estonia)

Elisa reported its 5G network carried a 5G phone call on June 27th, 2018 between the Estonian minister of Economy and her Finnish colleague in Finland. Tests performed showed data speeds of 2.2 Gbps. That said, the first 5G licences would be made available in the 3.4-3.6 GHz frequencies in autumn 2018.

2.4.2. Ooredoo (Qatar)

Ooredoo in Qatar claimed in May 2018 to be the first world player to launch 5G nationally with 50 sites registered late in July 2018 and 50 additional base stations to be added in August 2018 (see here the 5G launch event). Ooredoo seems to be providing 5G wTTH (wireless To The Home) services on 3.5 GHz spectrum domestically with the very few compatible devices available (25 devices according to Gulf times). Ooredoo showcased its device. Considering 5G mobile devices are not ready yet, it states it is waiting for manufacturers to produce 5G capable devices (June 2019).

2.4.3. USA: Verizon 5G Home service launched on October 1st, 2018

In the USA, Verizon 5G Home service was launched on October 1st, 2018, in limited areas of four US cities. The other mobile operators will launch their 5G services in the coming months.

Verizon

Since 2017, Verizon has been testing mm-wave 5G service in 11 cities (in Ann Arbor, Atlanta, Bernardsville, Brockton, Dallas, Denver, Houston, Miami, Sacramento, Seattle, and Washington, DC.). Verizon demonstrated a video 5G call at the 2018 Super Bowl and a NR data lab transmission with Nokia and Qualcomm in February 2018. In June 2018, Verizon tested two-way data transmission and multi-carrier aggregation and very high speeds outdoors. In August 2018, Verizon succeeded in transmitting a 5G signal to a moving vehicle.

In August 2018, Verizon and Nokia have achieved a transmission of 5G NR signal to a receiver situated in a moving vehicle using spectrum in the 28 GHz band, in a trial carried out in New Jersey. In September 2018, Verizon, in partnership with Nokia, has completed the transmission of a 5G mobile signal to a test van in Washington. The test was carried out with Verizon’s mm-wave spectrum and 5G network core, along with Nokia’s 5G radio equipment.

In September 2018, Verizon successfully transmitted a 5G signal on a commercial 5G NR network in Washington DC and Minneapolis on prototype devices.

Verizon 5G Home service was launched on October 1st, 2018 in limited areas of four US cities (Houston, Sacramento, Indianapolis, Los Angeles). The service is charged at 70 USD per month (50 USD/month for existing Verizon customers). There are no annual contracts, no equipment charges and no data caps. For the first three months, an Apple TV or a Google Chromecast Ultra is offered for free (40 USD after the first three months). Speeds range from 300 Mbps to 1 Gbps, depending on location.

Launches in additional cities will follow. Mobile 5G could follow within a half year.
Verizon uses CPE (Customer Premises Equipment) units and home routers from Samsung and is expected to use the Motorola Mod Z³ for mobile 5G.

AT&T

Since early 2017, AT&T has been performing fixed wireless & mobile 5G trials. The company works with partners such as Ericsson, Samsung, Nokia, and Intel. After Austin, TX, AT&T extended trials to Waco, TX, Kalamazoo, MI and South Bend, IN.

AT&T plans to launch 5G services to 12 cities or population centers by the end of 2018, including Dallas TX, Atlanta GA, Waco, TX, and Charlotte, NC, Raleigh, NC, and Oklahoma City. AT&T remains reserved about 5G FWA. AT&T is expected to launch 5G with a mobile “puck” as first device. After launch of the AT&T 5G service in early 2019, the roll-out will be extended to 19 additional cities including Las Vegas, NV, Los Angeles, Nashville, TN, Orlando FL, San Diego, CA, and San Jose, CA.

In November 2018, AT&T showcased its first mobile 5G device using mm-wave spectrum as well as the 'first mm-wave mobile 5G browsing session' in Waco, Texas. The described device is a NETGEAR Nighthawk based on Qualcomm Snapdragon X50 5G modem and AT&T’s mm-wave 5G network for connectivity. This 5G will become available by the start of 2019 for end-users.

AT&T also achieved tests of wireless 5G data transfer over mm-wave spectrum bands, via a mobile form factor device. The trial was carried out in Waco, Texas.

AT&T is the first in the U.S. to announce the launch of a commercial standard-based mobile 5G network on 21st December 2018. 5G hotspots will be deployed in the dense urban areas of 12 cities: Atlanta, Charlotte, N.C., Dallas, Houston, Indianapolis, Jacksonville, Fla., Louisville, Ky., Oklahoma City, New Orleans, Raleigh, N.C., San Antonio and Waco, Texas. The service will extend in parts of 7 other cities in 2019: Las Vegas, Los Angeles, Nashville, Orlando, San Diego, San Francisco and San Jose, Calif.

The NETGEAR Nighthawk 5G Mobile Hotspot device will run on AT&T’s 5G+ network over mm-wave spectrum. Customers outside of 5G+ network coverage will be able to use the device to access the best performing network in the country as well as AT&T’s 5G Evolution networks (equipped with 256 QAM, 4x4 MIMO, and Multiple LTE Carrier Aggregation) available in 385 markets. The Nighthawk hotspot device will be available to customers for 499 USD upfront and a monthly 70 USD payment for 15GB of data. This device requires an AT&T data plan compatible with 5G.

Sprint

Sprint, which could merge with T-Mobile US in 2019, disclosed a number of target markets ahead of its planned commercial launch in the first half of 2019. In February 2018, it named Atlanta, Chicago, Dallas, Houston, Los Angeles, and Washington DC as its initial wave of mm-wave 5G markets. Additional markets were revealed in May 2018, including New York City; Phoenix, AZ and Kansas City. Sprint will launch a first 5G LG smartphone in the USA by mid-year 2019.

T-Mobile USA

T-Mobile announced to target mobile 5G launch by 2020 in Dallas, Las Vegas, Los Angeles, CA, New York City and in a number of other cities. Unlike its competitors, T-Mobile is not expected to launch 5G
in mm-waves. It announced it will use its 600 MHz spectrum primarily and 28 and 39 GHz frequencies in the second stage. The idea behind is to be able to get high speeds with a broad coverage.

T-Mobile USA signed in August 2018 two 3.5bn USD contracts with Ericsson and Nokia to support its nationwide 5G network deployment. Under the terms of the contract, Ericsson will provide T-Mobile with its 5G NR hardware and software, as well as Ericsson’s digital services solutions. The mobile operator is targeting early 2019 for its commercial launch. It also expects that its fixed-wireless access service based on 5G networks will deliver speeds of 100 Mbps for up to two-thirds of the population in the coming years and will be reaching 90% of the country by 2024.

2.4.4. South Korea

3.5 GHz and 28 GHz spectrum were auctioned off in South Korea in June 2018.

The February 2018 Winter Olympics in PyeongChang provided a stage for displaying 5G innovation. KT was very active. Samsung and KT provided a 4K streaming video service via a 5G network using 28 GHz spectrum. KT provided the 5G data network through a collaboration led by Intel with partners including Ericsson, Nokia and Alibaba, while Samsung unveiled its 5G mobile tablet device to deliver a 4K streaming video via Intel’s base stations. KT demonstrated on its 5G network four types of data-heavy video streaming services: Sync view, Timeslice, 360 VR and Omnipoint view. KT also showed a 5G Connect Bus using 5G, capable of autonomous driving using Lidar sensors and the V2X technology. Hyundai demonstrated five Level4 autonomous cars on a 196km trip to PyeongChang; the cars were connected to the KT 5G net for entertaining the passengers.

SK Telecom, LGU+ and KT launched their 5G service in a number of cities on December 1st, 2018. The launches came earlier than previously announced and thus expected. In fact, all MNOs announced in July 2018 their intention to jointly launch 5G in March 2019. This intention arrived one year after a first agreement signed in April 2018 on a shared 5G deployment and network. This first agreement’s intention aimed at avoiding a very costly launch campaign when 4G came to reality back in 2011 and generating heavy cost savings of nearly 1 trillion KRW over the next ten years.

2.4.5. Japan

Historically, Japan has been at the forefront of mobile technology. Japan targets the Tokyo summer Olympic Games to launch 5G. However, NTT DoCoMo announced it could pre-launch 5G in September 2019 with plans to deploy commercial 5G services across Japan by mid-2020.

NTT DoCoMo

A few months ago, NTT DoCoMo executives indicated that the Tokyo Summer Olympics were a target for 5G launch. This has been confirmed in June 2018 by Mrs. Lan Chen, CEO of NTT DoCoMo Beijing Labs speaking at the MWC’18 in Shanghai. She announced a 5G “within 800 days” what should sometimes in summer 2020. Assignment of 5G spectrum in Japan is expected by end-March 2019.

NTT DoCoMo carried out a number of 5G trials with multiple vendors. For example, they cooperated with Tobu Railway to trial a 5G system at Tokyo Skytree Town using 28 GHz spectrum in March 2018. Earlier in November 2016, they carried out a large-scale field trial using 200 MHz of spectrum in the 4.5 GHz band in Yokohama, Japan. This trial aimed at testing Ultra Reliable and Low Latency
Communications (URLLC) resulted in network speeds up to 11.29 Gbps total and less than half-a-millisecond latency. NTT DoCoMo also completed 5G integrated access backhaul trials using the 39 GHz frequencies. With Nokia, NTT DoCoMo tested 5G on the 90 GHz band.

In May 2018, NTT DOCOMO achieved a 5G field trial at 28 GHz, involving a 5G base station and a car travelling at around 293 km/h. In November 2018, NTT DOCOMO and Mitsubishi Electric achieved peak data speeds of up to 27 Gbps during 5G trials, using a single mobile terminal and 500 MHz of spectrum in the 28 GHz band.

NTT DOCOMO, in partnership with Metawave Corp, demonstrated 5G technology in December 2018 using the 28 GHz band. The trial took place in Koto-ku, Tokyo and achieved data transmission speeds of 560 Mbps with Metawave’s meta-structures reflect-array in place, compared to 60 Mbps with no reflector.

In December 2018, NTT DoCoMo and Mitsubishi ran 5G trials in Kanagawa. Tests used a single terminal and 500 MHz of 28 GHz spectrum. By using a 16-beam spatial multiplexing in LOS (line of Sight) conditions with massive MIMO antennas, tests hit a peak speed of 27 Gbps at a distance of 10 metres. At a distance of 100 metres, tests achieved 25 Gbps.

Softbank

SoftBank has been performing many 5G trials with Huawei or Ericsson since 2017, notably using 4.5 GHz frequencies. SoftBank is working with Huawei to demonstrate 5G. A demonstration included real-time UHD video transmission (throughput of over 800 Mbps) using ultra-high throughput, remote control of a robotic arm and ultra-low latency transmission as well as remote rendering via a GPU server using edge computing. With ZTE, Softbank achieved DL speeds of 956 Mbps in Nagasaki in October 2017. Commercial launch of 5G service is expected in 2020.

KDDI

In December 2017, KDDI and Samsung completed a successful 5G demo on a train moving at over 100km/h. The distance between two stations was approximately 1.5km. Companies achieved a successful DL and UL handover as well as a peak speed of 1.7 Gbps.

KDDI has also performed 5G trials, mainly with Ericsson and Samsung Electronics. Between September 2017 and March 2018, KDDI and Ericsson tested a PoC in the 4.5 GHz frequency band in a many cities across Japan.

In November 2018, KDDI outlined plans to start offering 5G services in selected areas by 2019, with full-scale development coming in 2020. It reportedly aims to implement its 5G core in 2021, planning to launch various services using network slicing.

2.4.6. China

5G deployment in China is strongly backed by the government. 5G ranks among the strategic priority for the whole country (13th 5-year plan 2015-2020 and “Made In China” 2025 Initiative launched in 2013). In January 2017, the MIIT published a report on “Development Planning for Information and...
Communication Industry (2016-2020) in which it sets the objective of becoming one of the global leaders of 5G.

The “Made in China 2025” initiative aims for a commercial 5G launch by 2020. As part of the country plan and initiative, the authorities awarded grants to local 5G oriented companies including ZTE and Huawei. ZTE and Huawei received 72 million USD for 5G.

In October 2017, the Chinese government kicked off the 3rd phase of 5G technology research and development tests. This phase aims to get pre-commercial products ready for when the first version of 5G standard comes out in June 2019.

Time has accelerated significantly in 2018 and China Mobile brought forward its scheduled 5G launch by one year and finally plans to offer 5G services by year-end 2019 (pre-commercial launch in the course of 2019).

In December 2018, the Chinese Government allocated spectrum for 5G national trials until June 2020 to players. China Telecom and China Unicom received 100 MHz of spectrum in 3.5 GHz frequencies (3.4-3.5 GHz for China Telecom, 3.5-3.6 GHz for China Unicom). China Mobile obtained 260 MHz in 2.6 GHz (2515-2675 MHz) and 4.8 GHz (4800-4900 MHz) frequencies. Under the arrangement, China Telecom and China Unicom will stop using 2.6 GHz frequencies by end March 2019.

China Mobile

China Mobile started to conduct 5G trials during the second half of 2016. China Mobile plans to start offering 5G services in 2019, which is a year earlier than originally planned (2020). In 2018, China Mobile announced margin-scale trials in five cities including Shanghai and Hangzhou by the third quarter of 2018 with about 500 base stations (100 first base stations by end June 2018). Trials will be extended to 20 cities early 2019 with another 500 base stations, to test out business applications. The trial network will use 3.5 GHz spectrum and some of the 4.9 GHz band.

China Mobile appears to be the fastest player in China towards 5G. In November 2018, China Mobile presented its ‘5G Terminal Pioneer Programme’, through which it plans to launch 5G-compatible devices by 2019. The company announced that first 5G devices will be launched by H1 2019. Under the government’s current plans for 5G development, the new technology will see pre-commercial use in 2019 while full commercial launch will occur by 2020.

China Unicom

China Unicom announced in August 2018 that 300 5G base stations will be implemented in Beijing this year, via its ‘Next 5G’ initiative. China Unicom has been trialling 5G in 600 labs of 16 cities including Beijing, Tianjin, Qingdao, Hangzhou, Nanjing, Wuhan, Guiyang, Chengdu, Shenzhen, Fuzhou, Zhengzhou, and Shenyang. In 2019, application experiments and large-scale trials are scheduled.

China Telecom

China Telecom started testing 5G in six cities including Xiong’an, Shenzhen, Shanghai, Suzhou, Chengdu and Lanzhou in a view to test 5G in 12 cities in the end.
2.5. 5G pre-commercial trials

138 5G trials in the 28 MSs of the European Union and 171 trials including Russia, San Marino, Norway, Turkey and Switzerland

2.5.1. Analysis of the 171 trials registered so far

5G trials are presented in the European 5G Observatory as shown in the figure below:

Table 3: Screen shot of the trials base in the European 5G Observatory

<table>
<thead>
<tr>
<th>Country</th>
<th>Month</th>
<th>Operator</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>February</td>
<td>Huawei</td>
<td>28 MHz</td>
</tr>
<tr>
<td>Germany</td>
<td>September</td>
<td>Nokia</td>
<td>3.5-3.6 GHz</td>
</tr>
<tr>
<td>Germany</td>
<td>October</td>
<td>Telefonica</td>
<td>26 GHz</td>
</tr>
<tr>
<td>Germany</td>
<td>November</td>
<td>Ericsson</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>June</td>
<td>Cosmate</td>
<td>3.4 - 3.8 GHz</td>
</tr>
<tr>
<td>Greece</td>
<td>October</td>
<td>Nokia</td>
<td>3.4 - 3.8 GHz</td>
</tr>
<tr>
<td>Hungary</td>
<td>October</td>
<td>Magyar Telekom</td>
<td>15 GHz</td>
</tr>
<tr>
<td>Hungary</td>
<td>June</td>
<td>Magyar Telekom</td>
<td>3.5 GHz</td>
</tr>
<tr>
<td>Hungary</td>
<td>November</td>
<td>Vodafone</td>
<td>3.6 - 3.8 GHz</td>
</tr>
<tr>
<td>Ireland</td>
<td>February</td>
<td>Vodafone</td>
<td>5.6 - 5.8 GHz</td>
</tr>
<tr>
<td>Italy</td>
<td>March</td>
<td>TIM</td>
<td>Ericsson</td>
</tr>
</tbody>
</table>

Source: IDATE DigiWorld, December 2018

As many as 171 trials have been listed so far. A little more than a third of the 171 trials are technical tests (60 trials). The share of technical tests dropped significantly in the past six months. The number of technical tests also decreased over the last quarter.

Media and automotive are the verticals majorly driving trials

The most trialled verticals are media and entertainment (30 trials) followed by transport (23 trials) and automotive (17 trials).

The 171 trials were organised in 28 countries (138 in 23 of the 28 MSs of the European Union and 28 in Russia, San Marino, Norway, Turkey and Switzerland). No trials have been registered so far in the following MSs: Czech Republic, Cyprus, Luxembourg, Malta, Slovakia and Slovenia.

9 The analysis was made with the data available on the 5G Observatory on 12 December 2018
The most numerous trials performed in Spain, France and Italy

Trials are the most numerous in Spain, France, Germany and Italy. These top four countries are totalling 40% of trials. Germany ranks joint 2nd with France in terms of number of trials performed. Italy is followed by Russia and the UK which are tied.

On average, more than six trials by country have been listed so far.
The 3.4-3.8 GHz is again the most tested frequency band

When indicated (frequency bands tested are available only in selected trials, representing 49% of all trials listed), the most used frequency band for trials is by far the 3.4-3.8 GHz (56 trials tested the 3.4-3.8 GHz frequencies out of 82 trials mentioning which band was considered). The 26 GHz band which had not been tested yet in Europe, probably due to the unavailability of devices for this frequency band in Q3 2018 in Europe, is gaining traction and now appears in the list.

Figure 5: Frequency bands tested

More than half of the trials are completed

More than half of the trials are completed to date. Less than 1/3 (27%) of trials have been announced or planned. The rest is still in progress.

Figure 6: Status of 5G trials in Europe
Level of maturity of 5G trials

We evaluate the level of maturity according to three categories:

- 1: Most important 5G pilots: with at least 2 cell sites and involvement of end users
- 2: Other 5G pilots and trials (number by country and by vertical)
- 3: Smaller tests/demonstrators (number by country)

![Level of maturity of tests](image)

Figure 7: Level of maturity of tests

Source: IDATE DigiWorld, December 2018

Only the Elisa trial in Finland, dated July 2018, can be referenced as an important 5G pilot and get a category 1. The vast majority of trials (3/4) can be qualified as category 3 (small tests or demonstrators), and less than one fourth of them can be considered as intermediate (category 2).

2.5.2. Trial cities

The European Commission’s action plan of September 2016 confirmed by the EU Council in December 2017 targets the commercial rollout of 5G in one major city in every MS by 2020.

Specific cities in Europe announced their plans to become 5G Trials Cities, at the forefront of 5G trials and pilots. At the end of 2017, seventeen Trial Cities had been announced in 9 Member States: Amsterdam, Barcelona, Bari, Berlin, Espoo, L’Aquila, London, Madrid, Malaga, Matera, Milan, Oulu, Patras, Prato, Stockholm, Tallinn and Turin.

Three additional cities in 2 additional MS committed themselves to the target: Aveiro, Bristol and Ghent. In France, nine major regional cities were selected for 5G trials (Belfort, Bordeaux, Douai, Grenoble, Lannion, Lille, Lyon, Marseille, Nantes, Sophia-Antipolis et Toulouse) alongside with eleven cities in Paris’s suburbs (including Paris, Châtillon, Linas-Monthléry and Saclay). Major trials take place in Paris, Bordeaux and Lille.
2.5.3. Digital cross-border corridors

Ten "digital cross-border corridors" established inter alia accommodating live tests of 5G for Cooperative Connected and Automated Mobility

Within the European 5G vertical strategy, Connected and Automated Driving (CAD) is considered as a flagship use case for 5G deployment along European transport paths, in view of creating complete ecosystems around vehicles, beyond the safety services targeted by the Cooperative-Intelligent Transport System (CITS) roadmap of Europe.

This has led to a high-level agreement, in March 2017, between MSs at ministerial level, facilitated by the Commission, where MSs agree to intensify cooperation for the establishment of cross-border corridors for large-scale testing and early-deployment of 5G connectivity infrastructure for connected and automated vehicles.

In 2017, five digital cross-border corridors were announced and established live tests of 5G:

- Metz-Merzig-Luxembourg (France, Germany, Luxembourg)
- Rotterdam-Antwerp-Eindhoven (Netherlands, Belgium, Netherlands)
- Porto-Vigo and Merida-Evora (corridor Lisbon – Madrid),
- The E8 "Aurora Borealis" corridor between Tromsø (Norway) and Oulu (Finland) and
- The "Nordic Way" between Sweden, Finland and Norway

This list of corridors has been expanded during the EC Digital Day in April 2018 with announcements to work to develop corridors between:

- Spain and Portugal
- Greece, Bulgaria and Serbia to expand the corridor Thessaloniki-Sofia-Belgrade,
- On the Brenner pass motorway towards Italy (the Brenner motorway connects Innsbruck in Austria to Modena in northern Italy).
Table 4: 5G CAM cross-border corridors

<table>
<thead>
<tr>
<th>Corridors</th>
<th>Political Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotterdam-Antwerpen-Eindhoven: NL-BE</td>
<td>No LoI signed yet</td>
</tr>
<tr>
<td>Porto-Vigo, Evora-Merida: PT-ES</td>
<td>LoI signed on Digital Day 2018, 10 April 2018</td>
</tr>
<tr>
<td>E8 "Aurora Borealis": NO-FI</td>
<td>C-ITS-TEN-T legacy. First 10km Aurora open in FI for testing since Nov. 2017. LoI not yet signed</td>
</tr>
<tr>
<td>Nordic Way2: NO-SE-FI-DK</td>
<td>Follows-on Nordic Way 1, funded under C-ITS/CEF, which demonstrated that providing C-ITS services over cellular networks works.</td>
</tr>
<tr>
<td>Brenner Corridor: IT-AT-DE</td>
<td>Ahead of DD2, Italy and the three presidents of Euroregion Tirol-Südtirol-Trentino have confirmed their intention to work, in cooperation with other interested Member States, on the development of the 5G Corridor on the Brenner pass motorway. However, no LoI signed yet.</td>
</tr>
<tr>
<td>EE-LV-LT Via Baltica (E67) Tallinn (EE) – Riga (LV) – Kaunas (LT) – Lithuanian/Polsih border</td>
<td>MoU to be signed on 27-28 Sept. 2018 in Riga at the 5G Techrity event. Although focused on C-V2X, elements of the Riga-Tallinn segment are ITS (Smart E67 project).</td>
</tr>
<tr>
<td>LT-PL Via Baltica Kaunas-Warsaw</td>
<td>LoI Signed on 5 Sept. 2018. Goal is to cooperate in V2X, C-ITS, 4G LTE, LTE Advanced and 5G with the view to promote CAD.</td>
</tr>
</tbody>
</table>

Source: European Commission
2.6. 5G cities

The European Commission’s action plan of September 2016 confirmed by the EU Council in December 2017 targets the commercial rollout of 5G in one major city in every MS by 2020.

These trial cities aim to provide support for variety of technology and service demonstrations carried out during the 5G trialling phase, and provide valuable vertical use cases especially for Smart City concept to validate the trials in real user environments. When compared to the private sector, public entities such as cities usually have different interests even in similar use cases focusing e.g. on eHealth, energy, transport, smart buildings or digital service portals. In all of these domains, shared technology platforms, free access, open data and interfaces as well as the maximal involvement of local ecosystems and residents are common priorities.

- For example, the city of Barcelona is determined to transcend the “smart city” concept and deploy a program that integrates and coordinates local initiatives related to a truly digital transformation of the services the city offers to its citizens. Barcelona has just launched the 5GBarcelona strategy towards facilitating the deployment of trials and pilots across the city and so, become a 5G smart city. 5GBarcelona will have 5 nodes, to which more will be added until reaching a deployment of 20% of the territory in 2020.

- The city of Berlin aims to stipulate research and development of 5G technologies, and one of the city’s main strategic interest is to enable an innovation-stipulating environment and technology infrastructure, which can eventually provide the 5G experience to the public on the streets of Berlin.

- The City of Oulu is challenged to modernize the city governance and processes in the framework of constrained public expenditure and demand for deploying disruptive technologies enabling digitization, automation and robotization in public service delivery. One of the main strategic priorities is to enhance innovation led economic growth and competitiveness of the local economy and companies to create employment outcomes for the people of Oulu, in order to ensure sustainable and healthy living environment. Arranging broadband connectivity (eMBB) and providing local free 5G network services network for mobile IoT based experiments is the first step to adopt the 5G technologies for citizens and city administration. City also targets people mobility related service trials and offers e.g. traffic-light data as open data for service development...

- Similarly, the City of Patras is aiming at organizing, transforming and finally extending its current digital infrastructure into an open platform that will interconnect 5G related technologies. This digital transformation is performed in order to address e-administration issues related to the City of Patras while enhancing the quality of life of its citizens.

- City of Bristol as one of the main UK 5G Hub sites, together with University of Bristol, aims especially to demonstrate the 5G technologies for public. The Bristol target has been mainly
to show the potential of 5G in shaping the future of social interaction, entertainment, urban planning and public safety. The similar events as “Layered Realities - Weekend”, arranged in March 2018, are planned for near future. The promotional video from the event is also available. Bristol alongside with Bath will be the home of enhanced visual experiences for tourists using Augmented Reality and Virtual Reality in major local attractions as part of the 5G Smart Tourism project which was awarded 5 MGBP in March 2018.

- Telecom operators have announced additional trial cities. For instance in France, nine major regional cities were selected for 5G trials (Belfort, Bordeaux, Douai, Grenoble, Lannion, Lille, Lyon, Marseille, Nantes, Sophia-Antipolis et Toulouse) alongside with eleven cities in Paris’s suburbs (including Paris, Châtillon, Linas-Monthléry and Saclay).

We estimate that there were 30 5G enabled cities at the end of 2018: 5G cities identified by Member States in the COCOM survey (questionnaire on action 1 of the 5G Action Plan for Europe) and identified in the 5G Observatory:

- Belgium: Ghent
- Estonia: Tallinn
- Finland: Espoo, Oulu
- France: 5 cities in 2019
- Germany: Berlin
- Hungary: Budapest, Zalaegerszeg
- Italy: Bari, l’Aquila, Matera, Milan, Prato, Turin
- Netherlands: Amsterdam
- Poland: Gliwice, Łódź, Kraków, Warszawa
- Portugal: Aveiro
- Spain: Barcelona, Madrid, Malaga
- Sweden: Umea, Kista/Stockholm
- United Kingdom: Bristol, London
2.7. Spectrum assignment by public authorities

5G pioneer bands identified at EU level are the 700 MHz, the 3.6 GHz (3.4-3.8 GHz) and the 26 GHz (24.25-27.5 GHz) frequencies. Whereas the 700 MHz band has been harmonised through an EC Implementing Decision (EU) 2016(687) of 28 April 2016, a ‘5G-ready’ amendment of the 3.6 GHz implementing decision will be adopted in January 2019. The European Commission is about to adopt a harmonisation decision for the 26 GHz band in Q1 2019\(^\text{10}\).

Member States have adopted a common deadline for the effective usability of pioneer spectrum in the European Electronic Communications Code, namely the 3.6 GHz band and at least 1 GHz within the 26 GHz band have to be assigned in all Member States by end of 2020.

All Member States have recognised the need for significant harmonised spectrum for 5G. Work is ongoing. The review of progress towards making spectrum available to 5G shows various stages. Spectrum assignments by MSs are detailed in the Annex section.

2.7.1. Review of spectrum assignment progress

At least one auction complete or ongoing for one of the three pioneer bands as at early December 2018

In twelve MSs at least one spectrum auction is complete or ongoing as at early December 2018. The Swedish auction for 700 MHz frequencies began on time on December 4\(^{th}\), 2018. The first stage ended on December 10.

The following list shows MS having assigned 3.6 GHz spectrum that can be used in line with 5G technical conditions:

- Finland: 700 MHz in November 2016. 3.4-3.8 GHz (390 MHz), September 26th 2018.
- France: 700 MHz in 2015
- Germany: 700 MHz and 1500 MHz in 2015
- Ireland: 3.6-3.8 GHz (390 MHz), May 2017
- Italy: 700 MHz, 3.6-3.8 GHz (200 MHz) and 26 GHz (1000 MHz), September/October 2018
- Latvia: 3.4-3.7 GHz (250 MHz), November 2017, 3.55-3.6 GHz (remaining 50 MHz), September 2018
- Spain: 3.4-3.6 GHz (160 MHz), 2016 & 3.6-3.8 GHz (200 MHz), July 2018
- Sweden: 700 MHz (60 MHz), December 4\(^{th}\), 2018
- UK: 3.4-3.6 GHz (150 MHz), April 2018

The following countries will assign 3.6 GHz spectrum that can in principle be used for 5G. However, additional assignment measures are expected to be fully in line with 5G technical conditions:

At least one spectrum auction in a specific band scheduled for 2019

The auction procedure in at least one spectrum band is scheduled for 2019 in eleven MSs:

- Austria: 3.4-3.8 GHz, 190 MHz in 3.4-3.6 GHz and 200 MHz in 3.6-3.8 GHz, February 2019

\(^{10}\) ECC PT1 issued two CEPT reports (Report 67 on 3.6 GHz and Report 68 on 26 GHz) on ‘5G-ready’ technical harmonisation measures in July 2018 in response to a Commission mandate of 2016. EC regulations will be based on these two reports.
Belgium, 700 MHz in Q3-Q4 2019, 3.6-3.8 GHz in Q3-Q4 2019, 400 MHz in 2019, 1.5 GHz in 2019
Czech Rep., 700 MHz and 3.5 GHz in 2019
France, 3.6-3.8 GHz, mid-2019
Germany, 2 GHz/3.7-3.8 GHz Spring 2019
Greece, 3.4-3.8 GHz, Q4 2019
Hungary, 700 MHz/3.5 GHz in Q3 2019
Ireland, 700 MHz in 2019
Netherlands, 700/1400/2100 MHz, late 2019
Lithuania, 3.4-3.8 GHz, Q4 2019
Portugal, 700 MHz, Q4 2019

Spectrum auctions scheduled as from 2020
Spain, 700 MHz, Q1 2020
Malta, 700 MHz mid-2021
Lithuania, 700 MHz before 2022
Slovakia, 26 GHz after July 7, 2021
Poland, 700 MHz, 2020
UK, 3.6-3.8 GHz, 2020

Spectrum auctions postponed
Denmark, 2x30 MHz + 20 MHz in 700 MHz frequencies, 2x30 MHz in 800-900 MHz frequencies, 100 MHz in 2300-2400 MHz frequencies, initially scheduled in September 2018, postponed until further notice.

New public consultations have been released during Q4 2018
Process is ongoing in four MSs (Bulgaria, France, Lithuania and Romania). EU MSs may have launched public consultations on 5G spectrum or planned spectrum auctions without precise date.

Consultations in Germany, Greece, Luxembourg Malta, Poland, Slovakia, Slovenia and the UK are now closed:

- Germany: 3.4-3.8 GHz, 300 MHz
- Greece: 3.4-3.8 GHz, Q4 2019
- Luxembourg: 700 MHz, 1.5 GHz, public consultation
- Malta: 700 MHz, public consultation
- Poland: 700 MHz, 3.6-3.8 GHz, public consultation
- Slovenia: 70 MHz, public consultation
- Slovakia: 26 GHz, public consultation
- United Kingdom: 51-71 GHz, public consultation

New consultations were released in the course of the last reporting period (Q4 2018):

- France:
 - Public consultation on award procedures, procedures sequencing and on requirements (November-December 2018)
Public consultation on 1.5 GHz spectrum (July-September 2018)
- Romania, public consultation entitled « the National Strategy for the Implementation of 5G in Romania » (November 20th-December 21st, 2018)
- Lithuania, new public consultation on the use of 3.4-3.8 GHz frequencies (October-November 2018)
- Bulgaria: the Bulgarian regulator, the CRC, has issued in December 2018 a consultation on its planned spectrum policy activities for the next three years.

Spectrum bands for 5G have been earmarked
Spectrum bands have been earmarked in three MSs:
- Netherlands
- Portugal
- Bulgaria

Reflection phase
The remaining MSs are still at the internal reflection phase: Croatia, Cyprus and Estonia.

2.7.2. Spectrum availability for 5G use
Availability of spectrum in low, mid and high bands is key for 5G. The availability will highly contribute to the position of EU Member States in the 5G race.

Mid-band spectrum is defined as the baseline capacity layer, in favour of flexibility for many use cases with higher throughputs, wider spectrum and potential refarming of LTE spectrum. The 3.4-3.8 GHz band is the primary band in Europe with early availability.

High-band spectrum is known as the extreme capacity layer with large amount of spectrum potentially available for very high capacity, very high data rates but limited coverage, partially offset by massive MIMO. The 26 GHz band (24.25 – 27.5 GHz) is the pioneer high band for 5G in Europe.

Italy was the first Member State to make spectrum for 5G available in all the pioneer bands in September 2018.
Low-band (700 MHz) spectrum availability

700 MHz spectrum already assigned in Finland, France, Germany, Italy, Sweden.

Germany was the first European country to assign 700 MHz spectrum in June 2015. To date, only five MSs have assigned 700 MHz spectrum: Germany, France, Finland, Italy and Sweden. The first stage of frequencies assignment of the Swedish 700 MHz auction process ended on December 2018. The second stage on placement took place on December 11.

Table 5: Availability of 700 MHz spectrum in Member States (as at 15 December 2018)

<table>
<thead>
<tr>
<th>Member State</th>
<th>Frequencies</th>
<th>Tentative/Expected assignment date</th>
<th>Date of completion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>703-733/758-788 MHz</td>
<td>2019</td>
<td>Q2 2019 at the earliest</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>703-733/758-788 MHz</td>
<td>Q3-Q4 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>703-723/758-778 MHz</td>
<td>2x20 MHz release for 5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>n/a</td>
<td>EC issued a decision on 8 November 2018 to initiate proceedings against Croatia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>703-733/758-788 MHz</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Rep.</td>
<td>703-733/758-788 MHz</td>
<td>n/a</td>
<td>The band will be released on 30 June 2020</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>703-733/758-788 MHz</td>
<td>2019 ?</td>
<td>Initially scheduled for September 2018. Postponed until further notice</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>703-733/758-788 MHz</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>703-733/758-788 MHz</td>
<td>November 2016</td>
<td>Start in 2017</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>703-733/758-788 MHz</td>
<td>December 2015</td>
<td>Start in 2019</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>703-733/758-788 MHz</td>
<td>June 2015</td>
<td>Start in 2019/2020</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>703-733/758-788 MHz</td>
<td>End 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>703-733/758-788 MHz</td>
<td>Q3 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>703-733/758-788 MHz</td>
<td>2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>703-733/758-788 MHz</td>
<td>October 2018</td>
<td>Start in 2022</td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>703-733/758-788 MHz</td>
<td>January 1, 2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>703-733/758-788 MHz</td>
<td>2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>703-733/758-788 MHz</td>
<td>H2 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malta</td>
<td>703-733/758-788 MHz</td>
<td>June 2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>703-733/758-788 MHz</td>
<td>n/a</td>
<td>EC issued a decision on 8 November 2018 to initiate proceedings against the Netherlands</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>703-733/758-788 MHz</td>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>703-733/758-788 MHz</td>
<td>Q4 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>703-733/758-788 MHz</td>
<td>Q3-Q4 2019</td>
<td>“National Strategy for the Implementation of 5G in Romania” between November 20th and December 21st, 2018</td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>703-733/758-788 MHz</td>
<td>n/a</td>
<td>The band will be released after 30 June 2020</td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>703-733/758-788 MHz</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>703-733/758-788 MHz</td>
<td>Q1 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>703-733/758-788 MHz</td>
<td>December 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>703-733/758-788 MHz</td>
<td>2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: IDATE DigiWorld, based on NRA information
Mid-band (3.4-3.8 GHz) spectrum availability

| 3.4-3.8 GHz spectrum already assigned in 5 Member States: Finland, Italy, Latvia, Spain and United Kingdom |

3.4-3.8 GHz spectrum has been assigned\(^\text{11}\) in April 2018 in the United Kingdom, in July 2018 in Spain and (the upper half of the band) in September 2018 in Italy. Parts of 3.4-3.8 GHz spectrum were awarded in Latvia in November 2017 and September 2018. Finland assigned the 3.6 GHz band in September 2018.

Outside Europe, the USA is less advanced in this spectrum range. The FCC established a three-tier spectrum sharing system for spectrum at 3.5 GHz in 2015. In 2017, the FCC started to analyse how 3.7-4.2 GHz spectrum could be relevant for mobile broadband. Earlier in 2018, the FCC identified spectrum at 3.4 GHz as a government band for a potential reallocation for mobile broadband.

\(^{11}\) Parts of this frequency band is used for 4G fixed wireless access
Table 6: Availability of 3.4-3.8 GHz spectrum in Member States (as at 15 December 2018)

<table>
<thead>
<tr>
<th>Member State</th>
<th>Frequencies</th>
<th>Tentative/Expected assignment date</th>
<th>Date of completion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>3410-3800 MHz</td>
<td>February 2019</td>
<td></td>
<td>Four months after approval of the May 2018 tender document (period of approval not limited by law)</td>
</tr>
<tr>
<td>Belgium</td>
<td>3400-3800 MHz</td>
<td>Q3-Q4 2019</td>
<td></td>
<td>700, 1400, 3600 MHz spectrum concerned Renewal of existing licences to expire in March 2021 in 900, 1800 and 2600 MHz</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>3400-3800 MHz</td>
<td>Initially planned in 2018</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Czech Rep.</td>
<td>3600-3800 MHz</td>
<td>July 2019</td>
<td>2019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3400-3600 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>3400-3800 MHz</td>
<td>n/a</td>
<td>n/a</td>
<td>Auction expected in early 2019</td>
</tr>
<tr>
<td>Finland</td>
<td>3400-3800 MHz</td>
<td>Sept. 26, 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>3600-3800 MHz</td>
<td>Mid-2019</td>
<td></td>
<td>Public consultation in October 2018</td>
</tr>
<tr>
<td>Germany</td>
<td>3700-3800 GHz</td>
<td>Spring 2019</td>
<td></td>
<td>Full availability in 2022, early stage in 2019</td>
</tr>
<tr>
<td>Greece</td>
<td>3400-3800 MHz</td>
<td>Q4 2019</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>3400-3600 MHz</td>
<td>June 2016</td>
<td>Q3 2019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3600-3800 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>3400-3800 MHz</td>
<td>May 2017</td>
<td></td>
<td>Start in January 2019</td>
</tr>
<tr>
<td>Italy</td>
<td>3600-3800 MHz</td>
<td>September 2018</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>3400-3800 MHz</td>
<td>November 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3400-3800 MHz</td>
<td>October 2018</td>
<td></td>
<td>Remaining 50 MHz</td>
</tr>
<tr>
<td>Lithuania</td>
<td>3400-3800 MHz</td>
<td>2019</td>
<td></td>
<td>Public consultation in Q2 2018. New public consultation in Q3 2018</td>
</tr>
<tr>
<td></td>
<td>3800-4200 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>3600 MHz</td>
<td>H2 2019</td>
<td></td>
<td>Public consultation in Q3 2018</td>
</tr>
<tr>
<td>Malta</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Public consultation in Q2 2018</td>
</tr>
<tr>
<td>Netherlands</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>3400-3600 MHz</td>
<td>n/a</td>
<td>n/a</td>
<td>Public consultation in Q3 2018</td>
</tr>
<tr>
<td></td>
<td>3600-3800 MHz</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>3400-3800 MHz</td>
<td>Q3-Q4 2019</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3600-3800 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>3400-3600 MHz</td>
<td>2016</td>
<td></td>
<td>For 4G</td>
</tr>
<tr>
<td></td>
<td>3600-3800 MHz</td>
<td>July 2018</td>
<td></td>
<td>For 5G</td>
</tr>
<tr>
<td>Sweden</td>
<td>3400-3800 MHz</td>
<td>2019?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>3400-3600 MHz</td>
<td>April 2018</td>
<td>2020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3600-3800 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: IDATE DigiWorld, based on NRA information
High-band (24.25-27.5 GHz) spectrum availability

26 GHz spectrum is assigned in Italy

Italy was the first Member State to auction 1 GHz of the 26 GHz band; at world level, it ranks second, after South Korea, which already awarded 2,400 MHz spectrum at 28 GHz in June 2018. The USA will likely rank third globally with 1550 MHz of such spectrum. The FCC started auctioning 28 GHz spectrum on November 14th, 2018, a few weeks later than Italy. The auction of 24 GHz frequencies will start just after closure of the 28 GHz auction.

Table 7: Availability of 26 GHz spectrum in Member States (as at 15 December 2018)

<table>
<thead>
<tr>
<th>Member State</th>
<th>Frequencies</th>
<th>Tentative/Expected assignment date</th>
<th>Date of completion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>n/a</td>
<td>not before 2021</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Czech Rep.</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>26.5-27.5 GHz</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>26.5-27.5 GHz</td>
<td>2019</td>
<td>Public consultation in Q2 2018</td>
<td>General authorisations</td>
</tr>
<tr>
<td>Germany</td>
<td>26.5-27.5 GHz</td>
<td>2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>24.25-27.5 GHz</td>
<td>Q3 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>26.5-27.5 GHz</td>
<td>September 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Malta</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>26.5-27.5 GHz</td>
<td>n/a</td>
<td>Band reorganisation envisioned</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>26.5-27.5 GHz</td>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>26.5-27.5 GHz</td>
<td>Will be assigned after July 7, 2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>26 GHz</td>
<td>January 2018</td>
<td>Two blocks (56 and 112 MHz) awarded in but not available for 5G</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>n/a</td>
<td>2020</td>
<td>Potential rearrangement. 1.4 GHz of spectrum could be assigned</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>26.5-27.5 GHz</td>
<td>2020</td>
<td>Auction process considered</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>26.5-27.5 GHz</td>
<td>2020</td>
<td>Call for inputs in July 2017</td>
<td></td>
</tr>
</tbody>
</table>

Source: IDATE DigiWorld, based on NRA information

2.8. Product/market developments

2.8.1. Chipsets

As of end of December 2018, several 5G basebands have already been announced and should be integrated in products to be released as soon as in 2019 for the earliest device manufacturers.
Qualcomm, with its X50 modem was the first to announce its initiative, back in the end of 2016 and is today probably the most advanced player in terms of product availability, probably followed by Samsung, who announced its 5G baseband in August 2018 but with a much more integrated offering. As compared to Qualcomm, Samsung is indeed proposing, what it considers as the first integrated multimode 2G/3G/4G/5G baseband. The Qualcomm X50 module must be used together with a 2G/3G/4G baseband for Non Standalone Operation.

As can be seen in Table 8 below, besides Qualcomm and Samsung, also Intel, Huawei, through HiSilicon, and Mediatek have also announced their 5G initiatives in terms of baseband. At the Mobile World Congress in February 2018, Huawei had announced, through its subsidiary Hi-Silicon, its own 5G baseband called Balong 5G01, a chipset that Huawei claimed to be the first 5G commercial chipset, a claim that is true if we consider it is effectively used in Huawei own 5G CPE but that doesn’t reveal the level of maturity of the product. While both Qualcomm and Samsung chipsets support a throughput up to more than 5 Gbps in the mm-waves, Huawei Balong 5G01 currently supports a maximum throughput of 2.3 Gbps.

As for Intel and Mediatek, both players seem to lag behind in terms of product readiness. At MWC 2018, Intel was showcasing a solution still based on FPGAs, highlighting the integration steps still required for readily available and embeddable silicon. Mediatek seems to be in comparable situation, although much less is known about the development status of its Helio M70 5G baseband.

Table 8: Presentation of announced 5G chipsets

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Product name</th>
<th>Announcement</th>
<th>Availability</th>
<th>Bands</th>
<th>Throughputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualcomm</td>
<td>X50 (baseband)</td>
<td>First announced in 2016</td>
<td>End of 2018</td>
<td>Sub 6 GHz and 28 GHz</td>
<td>Up to 5 Gbps</td>
</tr>
<tr>
<td>Intel</td>
<td>XMM 8160</td>
<td>November 2018</td>
<td>2nd half 2019</td>
<td>Sub 6 GHz and mm-waves</td>
<td>6 Gbps</td>
</tr>
<tr>
<td>Samsung</td>
<td>Exynos 5100</td>
<td>August 2018</td>
<td>End of 2018</td>
<td>Sub 6 GHz and mm-waves</td>
<td>up to 2 Gbps</td>
</tr>
<tr>
<td>Hi-Silicon</td>
<td>Balong 5G01</td>
<td>February 2018</td>
<td>End of 2018</td>
<td>Sub 6 GHz and mm-waves</td>
<td>Up to 2.3 Gbps</td>
</tr>
<tr>
<td>Mediatek</td>
<td>Helio M70</td>
<td>June 2018</td>
<td>2019-2020</td>
<td>Sub 6 GHz and mm-waves</td>
<td>Up to 5 Gbps</td>
</tr>
</tbody>
</table>

Source: IDATE DigiWorld, December 2018

On paper, those chipset seem fairly similar, with support for 5G NR radio interface, both in Non Standalone (NSA) and Standalone, up to 8 channel aggregation, 256 QAM modulation in the downlink and support for both sub 6 GHz frequency bands and mm-waves. Because more bandwidth is available in the mm-waves than in the sub 6 GHz band, possible performance differs depending on the frequency band used. The announcement of Qualcomm, that 20 OEMs were working on implementing products based on the Snapdragon X50, highlights how Qualcomm seems to be ahead in the race to enabling 5G mobile devices.

www.idate.org © IDATE DigiWorld 2019 – p. 33
A specific challenge with 5G for chipset manufacturers is the support of mm-waves because of the possibility for the hand, body, or any obstacle to easily block mm-wave signal. In order to circumvent this issue, Qualcomm has developed a new antenna module called QTM052 that brings support for mm-waves. In order to maintain connectivity, four of those modules are required in a device, so that whenever one antenna is blocked by something, another one can continue to receive a signal through a different path.

![Figure 8: Layout of QTM052 mm-wave antenna module in a smartphone form factor](source: Qualcomm)

The first smartphone to integrate this complete solution from Qualcomm (5G baseband + mm-wave Radio Front-End) will be the Motorola Z3 announced in August 2018. 5G connectivity, however, will only be available as an additional “mod” to be purchased when available at the beginning of 2019. The fact that a separate module is required shows that integration within mobile device is not yet over but still, that readiness of commercial 5G mobile devices will come closer than initially expected.

Noteworthy, the integrated strategy of players such as Samsung and Huawei, is to develop their modem (and other chipsets) internally. This strategy has started a few years ago and is now beginning to bear its fruits with, at least according to the promises, truly capable products. Essentially, this strategy enables a shorter Time-To-Market, but it is also aimed at reducing the dependence on players such as Qualcomm and eventually at tailoring better chipsets to the device manufacturing needs, and possibly providing more differentiation.

2.8.2. Devices

The release of 5G baseband and RF systems is the first step before commercial devices. Usually, when a new radio technology is released, basebands are developed and implemented in relatively simple devices such as mobile WiFi hotspots, before more complex devices such as smartphones, where integration is always more challenging. Before fully commercial devices can be made available, several steps are required.
This time, with 5G, Fixed Wireless Access is one of the first use cases, rather than mobile usage and first commercial devices announced have been 5G home routers, such as the one announced by Huawei at MWC 2018 in Barcelona, or the one by Samsung more recently. Those early devices have been more specifically designed for carrier partners Verizon in the US and in South Korea, and have already received their approval by the FCC.

Those first devices are available in indoor and outdoor versions. It is questionable whether they can be considered as true commercial devices because of not being openly available, and as the networks they have been designed for have not yet been launched. However, their development seems to be over, which is a good indication that the building of an end-to-end 5G device ecosystem is starting.

In terms of mobile device, one mobile hotspot from Huawei has been spotted at MWC 2018 but this may very well only be dummy device to illustrate future devices in preparation. The biggest challenge
at this stage is to make the difference between prototypes and fully ready devices. As mentioned, earlier, Huawei and Samsung have been able to present devices earlier because of the shorter Time-To-Market than the development of their own 5G baseband has enabled.

Figure 12: Motorola Z3 functioning with a 5G mod

In August 2018, Motorola presented what they call a 5G upgradable device, the Motorola Z3. Like other Motorola devices, this smartphone supports add-ons developed by Motorola as an extension of the device. With the 5G mod, Motorola Z3 users will be able to support Verizon 5G mobile network that is to be launched in the beginning of 2019. While pictures have been provided to the press and devices displayed, no one has been able to test this “mod”.

It is thus clear that this announcement is more a marketing move from Motorola and Verizon than a real breakthrough. By the time this mod will be launched in early 2019, it is not impossible that other smartphones from other vendors with more integrated 5G connectivity will have been announced. LG notably has also announced that it would bring the first 5G smartphone in the US.

Figure 13: LG will work with sprint to launch its 1st 5G smartphone in the US

In the table below, we list the 5G devices that have been announced or presented so far. While it may seem limited at this stage, it should grow up rapidly, as commercial network are officially launched. Qualcomm has already announced that 20 OEMs so far were working on implementing Snapdragon X50 in their device. With 5G network official launch in South Korea in March 2019\(^\text{12}\), smartphones from other vendors, notably Samsung and LG are likely to be announced.

\(^\text{12}\) The three Korean MNOs announced in December 2018 the launch of 5G services for enterprises
Table 9: List of 5G devices announced or presented

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Product name</th>
<th>Baseband</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTC</td>
<td>n/a</td>
<td>Qualcomm</td>
<td>HTC announced a partnership with Sprint in November 2018 for the provision of a 5G mobile hotspot, which it plans to launch in H1 2019</td>
</tr>
<tr>
<td>Huawei</td>
<td>Huawei 5G CPE (Sub 6 GHz)</td>
<td>Huawei</td>
<td>Peak rate up to 2 Gbps (LTE + 5G dual connectivity)</td>
</tr>
<tr>
<td>Huawei</td>
<td>Huawei 5G CPE (mm-waves)</td>
<td>Huawei</td>
<td>Peak rate up to 2.3 Gbps (LTE + 5G dual connectivity)</td>
</tr>
<tr>
<td>Huawei</td>
<td>Huawei 5G mobile Wifi</td>
<td>Huawei</td>
<td>Shown but unsure whether the product development is over or not (dummy device shown at MWC?)</td>
</tr>
<tr>
<td>Intel</td>
<td>2-in-1 PC 5G prototype</td>
<td>Intel prototype</td>
<td>2 in 1 PC concept supporting the 28 GHz band</td>
</tr>
<tr>
<td>LG</td>
<td>n/a</td>
<td></td>
<td>No products announced yet but claim to be 1st in launching a 5G smartphone in the US. Agreement with Sprint announced in August 2018.</td>
</tr>
<tr>
<td>Motorola</td>
<td>Z3</td>
<td>Qualcomm</td>
<td>Mid-tier smartphone with 5G connectivity available with an additional module to be purchased separately early 2019</td>
</tr>
<tr>
<td>Netgear</td>
<td>Nighthawk 5G mobile hotspot</td>
<td></td>
<td>Announced in October 2018. Will support mm-wave bands for AT&T</td>
</tr>
<tr>
<td>OnePlus</td>
<td>n/a</td>
<td>Qualcomm</td>
<td>Planning to launch a model with UK operator EE in H1 2019</td>
</tr>
<tr>
<td>OPPO</td>
<td>n/a</td>
<td>Qualcomm</td>
<td>Planned for H1 2019</td>
</tr>
<tr>
<td>Samsung</td>
<td>Samsung Outdoor CPE</td>
<td>Samsung</td>
<td>Indoor and outdoor Home router. 2x2 MIMO with each antenna having 32 antenna elements.</td>
</tr>
<tr>
<td>Samsung</td>
<td>Samsung tablet (prototype?)</td>
<td>Samsung</td>
<td>Pre 5G tablet (support for mm-waves for KT and Verizon), support multi Gbps throughputs, 4G compatibility</td>
</tr>
<tr>
<td>Samsung</td>
<td>Galaxy S10</td>
<td>Samsung?</td>
<td>Planned for US operators AT&T and Verizon in 2019</td>
</tr>
<tr>
<td>Vivo</td>
<td>n/a</td>
<td>Qualcomm</td>
<td>Planned for H1 2019</td>
</tr>
<tr>
<td>Xiaomi</td>
<td>n/a</td>
<td>Qualcomm</td>
<td>Planned for H1 2019</td>
</tr>
<tr>
<td>ZTE</td>
<td>n/a</td>
<td>Qualcomm</td>
<td>5G “smart terminals” to be launched end of 2018 / early 2019</td>
</tr>
</tbody>
</table>

Source: IDATE based on announcements

Other OEMs such as Asus, HMD, inseego, Netcomm Wireless, Sierra Wireless, Telit, WingTec and WNC have signed an agreement with Qualcomm to use the manufacturer’s chipset. Sharp, Fujitsu and Sony
are currently working for the Japanese market. Apple is expected to wait until 2020 before launching a 5G iPhone.

2.8.3. Infrastructure ecosystem

Infrastructure equipment is probably even more important than devices in the early building of an ecosystem, as they are used to test the technology features and concepts, even as the technology is being standardized within 3GPP. Equipment vendors were early in announcing their effort in building 5G technology, often by announcing trials efforts with Mobile Network Operators and/or chipset manufacturers. Those demonstrations are often focused on pieces of technologies or concepts, such as Massive MIMO, the use of mm-wave in different mobility scenarios...

As industry efforts have now resulted in early (and accelerated) standardization of the technologies and as first operators are now preparing for network launch by the end of the year 2018 or early 2019, most equipment vendors have built and presented a 5G solution so that first networks can start to be deployed, even though commercial devices are not there yet.

Those solutions share more or less the same features, although each vendor has designed its solution around its main strength. These features are:

- 3GPP Release 15 compliance: Release 15 is the first official release of 5G. Before that, some equipment vendors have worked around not finalized version of the standard, or as is the case of network operator having built a pre-standard (such as Verizon with the 5GTF). As Release 15 of 3GPP has seen its specs frozen, infrastructure equipment now highlights their full Rel. 15 compliancy.
- End-to-end offering: in the race to being the most advanced vendor, it is important to show full end-to-end product portfolio, which means having a core network solution, a transport solution, a base-station adapted to different scenarios (e.g. such as indoor or outdoor), and a “front-end” solution with diverse antenna solutions
- A (virtual) core network solution: this is built to be deployed in the cloud for maximum flexibility and to support the deployment of certain network functions at different places in the network, in a centralized or more or less distributed (up to the edge of the network) way
- Support for massive MIMO: Massive MIMO, beamforming and beam tracking and beam steering are key features to attain increased spectrum efficiency in 5G. The support of this feature is thus key for equipment vendors to assert 5G ambitions
- Support for sub 6 GHz and mm-wave: While mm-wave has received much of the attention in the race to 5G because of all the challenges associated in operating a radio network in these frequency bands (the 26 and 28 GHz bands notably), but C band below 6 GHz has also seen traction because of its roaming capabilities for 5G. In Europe, early deployments are likely to be in this band rather in the 26 GHz band, because of its better coverage capabilities and the feeling of operators that they are not yet running out of capacity (as compared to the U.S. for instance)

Below, we present the 5G portfolio of each equipment manufacturer. Their claim is often similar and as for device baseband, those claims can be seen through different angles. The table below summarizes what stands out from each vendor solution:
Table 10: Infrastructure equipment 5G solutions from major vendors

<table>
<thead>
<tr>
<th>Equipment vendor</th>
<th>Most notable for</th>
<th>Device manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huawei</td>
<td>FWA and end to end solution (up to the baseband for devices)</td>
<td>Yes</td>
</tr>
<tr>
<td>Ericsson</td>
<td>End to end solution. Indoor and outdoor solution, spectrum sharing between 4G and 5G</td>
<td>No</td>
</tr>
<tr>
<td>Nokia</td>
<td>End to end solution. Cloud solution. ReefShark chipsets for network solutions</td>
<td>No</td>
</tr>
<tr>
<td>ZTE</td>
<td>End to end solution. Massive MIMO, Ultra Dense Networks</td>
<td>Yes</td>
</tr>
<tr>
<td>Samsung</td>
<td>Provision of RAN equipment with mm-wave capabilities, FWA and end to end solution (up to the baseband for devices)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Source: IDATE DigiWorld, December 2018
5G infrastructure contracts announcements

The first significant 5G infrastructure contracts have been announced in the previous months and are summarized in the table below:

<table>
<thead>
<tr>
<th>Country</th>
<th>MNOs</th>
<th>Equipment Vendors</th>
<th>Amount</th>
<th>Time period</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>Deutsche Telekom</td>
<td>n/a</td>
<td>20 bEUR</td>
<td>2018-2021</td>
<td>5G launch in 2019. Target 99% pop. Coverage (90% geo. Coverage) by 2025</td>
</tr>
<tr>
<td>UK/Ireland</td>
<td>Three</td>
<td>n/a</td>
<td>>2 bGBP</td>
<td>2018-2021</td>
<td>5G launch in H2 2019. 62 MEUR in CAPEX in H1 2018/100 MEUR per year (Spectrum, fibre network, 20 new data centres, CA)</td>
</tr>
<tr>
<td>France</td>
<td>Orange</td>
<td>Decision in early 2019</td>
<td>A share of 7.4 bEUR</td>
<td></td>
<td>Orange intends to spend 7.4 bEUR in investments in 2018, a 3% increase compared to 2017. Orange will enhance its fibre deployment and the LTE coverage and prepare 5G.</td>
</tr>
<tr>
<td>Outside Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>T-Mobile USA</td>
<td>Nokia</td>
<td>3.5 bUSD</td>
<td>2018-2019</td>
<td>5G launch in 2019. Building of a 3GPP 5G NR nationwide network using 600 MHz and 28 GHz spectrum and Nokia’s 5G technology (AirScale radio platforms and cloud-native core, AirFrame hardware, CloudBand software, SON and 5G Acceleration Services)</td>
</tr>
<tr>
<td>USA</td>
<td>T-Mobile USA</td>
<td>Ericsson</td>
<td>3.5 bUSD</td>
<td>2018</td>
<td>5G NR equipment, digital services solutions, including dynamic orchestration, business support systems (BSS) and Cloud Core</td>
</tr>
<tr>
<td>China</td>
<td>All three Nokia MNOs (CM, CU, CT)</td>
<td></td>
<td>>2 bEUR</td>
<td>2018-2019</td>
<td>5G launch in 2019. 1-year deal for 4G radio and fixed access equipment, IP routing and optical transport equipment. Investments dedicated to 4G networks’ upgrade and pave the way to 5G.</td>
</tr>
<tr>
<td>South Korea</td>
<td>SKT</td>
<td>Mainly Samsung (5G), Ericsson, Nokia</td>
<td>9 bUSD</td>
<td>2017-2019</td>
<td>IoT, 5G, IA, autonomous vehicles</td>
</tr>
<tr>
<td>South Korea</td>
<td>KT</td>
<td></td>
<td>23 trillion KRW (20.5-2023 bUSD)</td>
<td></td>
<td>5G R&D (5G Open Lab in Seoul), 5G tests and launch, other tech</td>
</tr>
<tr>
<td>Japan</td>
<td>NTT DoCoMo</td>
<td></td>
<td>1 trillion JPY (8.8 b USD)</td>
<td>2018-2023</td>
<td>1 trillion JPY on infrastructure (590 bJPY in 2018, up from 570 bJPY initial target). 10 bJPY (80 KEUR) for offering pre-commercial 5G services in limited locations by Sept. 2019 (official target for launch)</td>
</tr>
</tbody>
</table>

Source: IDATE DigiWorld, December 2018
3. Annexes

3.1. National strategies and plans by MS

3.1.1. Austria
Consultations on 5G spectrum, July 2017-February 2018
3.4-3.8 GHz SCA auction scheduled for February 2019
700 MHz/1500 MHz/2100 MHz, Q2 2019 at the earliest
5G Strategy for Austria, April 2018
All MNOs started 5G trials.
The Austrian Government set up a steering group for 5G in February 2017. The “5G strategy for Austria” document was approved in April 2018.
The document defines three phases:

- Pre-commercial 5G tests are expected to be held during the first phase by mid-2018
- By year-end 2020, nationwide availability of 100 Mbps connections should be almost reached. This creates the basis for a nationwide expansion of 5G. At the same time, the market launch of 5G in all provincial capitals should take place.
- In Phase 3, 5G should be accessible across the main traffic roads by year-end 2023, followed by nationwide coverage two years later.

It lists 24 actions in terms of spectrum, funding, research..., translating into ten concrete measures for 5G applications.

3.1.2. Belgium
Royal Decrees adopted in July 2018 among which draft regarding the 700 MHz, 1500 MHz and 3600 MHz bands. Plans released in September 2018.

In July 2018, Royal Decrees were adopted = among which draft regarding the 700 MHz, 1500 MHz and 3600 MHz bands. In September 2018, the BIPT released its plans for the introduction of 5G in Belgium. 700 MHz, 3400-3800 MHz and 1500 MHz (SDL) frequencies are expected to be auctioned fall 2019. The 26 GHz auction will not take place before 2021. Upper frequencies (31.8-33.4 GHz and 40.5-43.5 GHz) should be auctioned as from 2022.
3.1.3. Bulgaria

5G border corridor Bulgaria, Greece, Serbia.

The CRC closed a public consultation on frequency allocations in October 2017. It proposed to sell eight blocks of 5 MHz in the 1.5 GHz band (1452 MHz-1492 MHz), three paired blocks of 5 MHz in the 2GHz band (1920 MHz-1935 MHz/2110 MHz-2125 MHz), 14 paired 5 MHz blocks of frequency division duplex (FDD) spectrum in the 2.6 GHz band (2500 MHz-2570 MHz/2620 MHz-2690 MHz), ten blocks of 5 MHz TDD spectrum in the 2.6 GHz band (2570 MHz-2620 MHz), 34 blocks of 5 MHz in the 3.6GHz band (3430 MHz-3600 MHz) and further 22 blocks of 5 MHz TDD in the 3.6 GHz band (3645 MHz-3700 MHz and 3745 MHz-3800 MHz).

In July 2018, Bulgaria, Greece and Serbia signed an agreement to develop an experimental 5G cross-border corridor (Thessaloniki – Sofia – Belgrade) that will test autonomous vehicles.

In December 2018, the Bulgarian regulator, the CRC, has issued a consultation on its planned spectrum policy activities for the next three years. CRC is planning to redistribute spectrum in the 3400MHz-3800MHz band for 5G use.

3.1.4. Croatia

Strategy for Broadband Development in Croatia 2016-2020

The Strategy for Broadband Development in Croatia for 2016-2020 was adopted in July 2016. It aims at achieving full broadband deployment by a technology neutral approach. The estimated budget for the implementation of the Strategy measures is circa 770 MEUR.

A round table on “introduction of the 5G network in Croatia” was held in May 2018.

3.1.5. Cyprus

Cyprus Broadband Plan 2016-2020

In 2016, the Cyprus Broadband Plan 2016-2020 was published; it covers broadband action plans and strategic objectives for 2016-2020.

3.1.6. Czech Republic

3.7 GHz spectrum auctioned off - Spectrum auctions in the 700 MHz and 3.5 GHz frequencies scheduled for 2019.

The Government of the Czech Republic adopted the National Plan for the Development of Next Generation Networks in October 2016.

CTU auctioned off 3.7 GHz spectrum in 2017 to four bidders, including two new players:

- Telecom 5G: two 40 MHz blocks 3720 MHz-3760 MHz and 3760 MHz-3800 MHz
- O2 Czech Republic: one block 3680 MHz-3720 MHz
• PODA: 3640 MHz-3680 MHz
• Vodafone Czech Republic: one block 3600 MHz-3640 MHz

Each 40 MHz block was sold for CZK203 million (9.2 million USD), for a total of CZK1.015 billion.

This spectrum seems to be dedicated to “Geographically localised BWA with fixed, mobile or nomadic terminals” and not 5G (source: CTU - http://spektrum.ctu.cz/en/band/3400-3600-mhz?filter%5BfrequencyFrom%5D=3&filter%5BfrequencyFromUnit%5D=GHz&filter%5BfrequencyTo%5D=4&filter%5BfrequencyToUnit%5D=GHz).

3.1.7. Denmark
Action plan dated 2018.

An action plan has been defined early in 2018. It has to be approved by the Minister before year-end 2018.

In March 2018, the Danish Energy Agency launched a consultation (including a draft Information Memorandum) for the auction of spectrum licences in the 700 MHz, 800-900 MHz and 2300-2400 MHz bands. As a result of the consultation, the process was scheduled for September 25th, 2018 and postponed until further notice at the beginning of September 2018.

3.1.8. Estonia
No information available yet.

3.1.9. Finland
Early award of trial licenses to a large number of companies (October 2015-October 2017)

700 MHz frequencies assigned in November 2016

3.4-3.8 GHz spectrum auctions scheduled to begin on September 26, 2018.

Elisa, first 5G network in Europe launched in June 2018

Early award of trial licences to a large number of companies (October 2015-October 2017)

5G Test Network Finland is a consortium of industrial partners (vendors, including Nokia, MNOs including Telia and Elisa, FICORA, Finnish universities and research institutes including Aalto, Oulu, Turku, VTT…) aiming at providing the best and most appealing 5G test network environment and ecosystem.

3.1.10. France
700 MHz frequencies assigned in December 2015.

Consultation on 5G, 2016.

Trials licenses and trial cities, 2017.

Provision of mid-band spectrum for trials in selected cities.

Ongoing discussions and study to open up 3.4-3.8 GHz and 26 GHz spectrum to 5G. 3.4-3.8 GHz auction a priori scheduled for mid-2019.

5G roadmap, July 2018.

5G initiatives.

The 5G road began in 2016 when ARCEP launched a public consultation on 5G. The process accelerated in 2017 when ARCEP consulted on its 5G roadmap and awarded trial licences.

- In March 2017, ARCEP published a report in “5G: Issues and Challenges”
- In January 2017, ARCEP launched a public consultation on “New frequencies for the regions, businesses 5G and innovation”.
- 5G trial authorisation in Lille, Douai, Bordeaux and Lyon in February 2018
- Creation of a 5G pilot window 5G@arcep.fr in January 2018. ARCEP opened a 5G pilot window for assigning frequencies to stakeholders wanting to perform full-scale 5G pilot trials (ports, hospitals, connected roadways...).
- On May 22nd, 2018, ARCEP launched a public consultation on making the pioneer 26 GHz band available to kick-start 5G rollouts. It ran until 18 June 2018.
- Mid-July 2018, ARCEP disclosed the French 5G roadmap and announced the launch of four priority areas:
 - Free up and assign 5G spectrum; ARCEP is currently working hard on future connectivity needs and on freeing-up and awarding 3.4-3.8 GHz spectrum
 - Facilitate development of new uses and applications
 - Support deployment of new infrastructures
 - Ensure transparency and discussion on 5G deployments and on public exposure
- A public consultation on the 1.5 GHz band was opened between July 30th and September 30th, 2018.
- A public consultation on award procedures, procedures sequencing and on requirements was opened between October 26th and December 19th, 2018 to collect ideas and needs from operators, local authorities, vertical market players, economic stakeholders and all interested parties. ARCEP will be holding a second consultation on the call or calls to tender, which it will then propose to the Government. The call for tenders could be issued in mid-2019.
- In H2 2018, discussions are organised on verticals (connected vehicle, industry 4.0).
- Live scale tests are awaited for early 2019.
- In the first half 2019, the Government expects to organise a major event on 5G.
- The call for applications is scheduled for the second half 2019
Other public initiatives

The other public initiatives aim to create appropriate ecosystem in the country to create a dynamic buoyant ecosystem favorable to innovation:

- The initiative “La French tech”
- The initiative “France Très Haut Débit” (Optic Fiber)
- The programme “Nouvelle France Industrielle” (New Industrial France) created in October 2013 by French government to boost productivity and investments in 34 industrial sectors. The initial budget of 3.7 billion EUR. The programme gathers industrial players, public institutions, competition committees, operators, and well-established research organizations for 13 priority actions where fiber broadband and 5G are key elements.

3.1.11. Germany

700 MHz frequencies assigned in June 2015

“5G for Germany”, autumn 2016

5G spectrum roadmap, 2018

Final conditions for 5G Auction, November 2018

5G initiatives

The Bundesnetzagentur published its “Frequency Compass” in July 2016 in a view to identify areas for regulatory action on spectrum for 5G. More detailed Points of Orientation were published in December 2016.
The Government launched in autumn 2016 its “5G Initiative for Germany”. In a paper released in September 2017, the Federal Government describes the national 5G strategy (context, actions, rollouts) over the period to 2025. It defines five fields of actions, key milestones and allocates 80 MEUR to 5G research initiatives in 5G research centres:

Figure 15: 5G strategy in 5 steps

![5G strategy in 5 steps](image)

Figure 16: Key milestones of 5G strategy for Germany

<table>
<thead>
<tr>
<th>Year</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>First test beds with 5G relevance</td>
<td>Working group of the Federal Government and the Federal states to implement the DigitaleGesellschaft</td>
<td>Start of 5G dialogue forum</td>
<td>Start of consultations on making 5G frequencies available</td>
<td>Evolution of the support framework with regard to gigabit networks</td>
<td>Evaluation and, if necessary, evolution of the 5G strategy</td>
</tr>
<tr>
<td>5G Rollout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: The Federal Government, 5G Strategy for Germany, as at July 2017

Figure 17: 5G research centers in Germany

![5G research centers in Germany](image)

Source: The Federal Government, 5G Strategy for Germany, as at July 2017

Based on the submitted views, the German NRA released key elements and launched a formal demand for nationwide assignments in the 2 GHz and 3.6 GHz bands in June 2017.
In January 2018, the German NRA released a draft consultation setting out that scarce spectrum in the 2 and 3.6 GHz bands would be auctioned. Decisions I and II were published in May 2018.

- In the 2 GHz band, 2x40 MHz will be made available as from 1st January 2021. An additional 2x20 MHz will be available as from 1st January 2026.
- In the 3.6 GHz band (3.4-3.7 GHz), some of the spectrum is assigned de facto on a nationwide basis (until 2021/2022) will be available as from 1st January 2022 (earlier stage as from 2019). Other public initiatives

Award conditions and auctions rules for 5G were released on November 26th, 2018.

5G spectrum auctions is scheduled for spring 2019. The qualification procedure is open from November 26th, 2018 until January 25th, 2019. Coverage conditions have been strengthened while the 5G timetable seems to have been softened. Conditions are set in two stages (2022 and 2024).

Figure 18: 5G timeline in Germany

Source: IDATE DigiWorld, as of 3 December 2018

3.1.12. Greece

Upcoming trial licences in 3.4-3.8 GHz frequencies with award of licences in Q4 2019

No major trials to date

5G cross-border corridor (Bulgaria, Greece, Serbia)

EETT expects to see 5G trials using upcoming trial licences.

EETT expects to award 3.4-3.8 GHz spectrum in Q4 2019.

In July 2018, Bulgaria, Greece and Serbia signed an agreement to develop an experimental 5G cross-border corridor (Thessaloniki – Sofia – Belgrade) that will test autonomous vehicles.

3.1.13. Hungary

“Digital Success Programme 2.0”. Strategic study.
European 5G hub for 5G

In July 2017, the domestic Government stated three major objectives for Hungary in its "Digital Success Programme 2.0". Strategic study.

- Hungary to become a European hub for 5G developments by 2018
- Hungary to play a leading regional role in testing applications based on 5G technology
- Hungary to be among the first to adopt 5G technology after 2020.

The 5G coalition with up to 50 Hungarian government institutions, companies, business chambers, universities, research institutes and professional and civic organisations was formed mid-June 2017. The 5G Coalition set goals including drawing up a 5G development strategy and creating a testing environment to give Hungary a say in setting global 5G standards, aiming for the nation to become an early 5G adopter from 2020.

3.4-3.8 GHz

In June 2016, NMHH auctioned off 3.4-3.8 GHz spectrum to Vodafone and Digi. Licenses for 60+20 MHz TDD usage at present in the lower part of the band. Vodafone: 3410-3470 MHz, Digi: 3470-3490 MHz. New technical criteria for the introduction of 5G can be implemented (under elaboration).

26 GHz band

- Intensive fixed service use currently in 24.5-26.5 GHz sub-band.
- Expiry date of most of the licenses is 2027.
- Negotiation with present frequency users is ongoing.
- 26.5-27.5 GHz sub-band suitable for early introduction of 5G
- Strategy for implementing new technical criteria for the introduction of 5G is under elaboration and the rules for the transition period are to be developed.

3.1.14. Ireland

3.4-3.8 GHz band

350 MHz of TDD spectrum has already been auctioned in 2017. Licenses for 5G services will start in January 2019 and will expire on 31 July 2032 (fifteen years).

“The Auction resulted in the successful assignment of all 350 MHz of TDD spectrum. The Auction offered this spectrum in 594 lots spread over nine geographic regions (four rural and five urban) and is assigned on a contiguous basis.” (source: ComReg)

- Imagine Communications Ireland Ltd (Imagine), currently the largest Wireless Internet Service Provider (WISP) obtained spectrum rights of use for 60 MHz in each of the rural regions;
- Airspan Spectrum Holdings Ltd (Airspan), a new entrant and the UK arm of a US global provider of 4G broadband wireless systems and solutions. Airspan’s products serve operators and markets such as smart utilities, transportation and public safety in both licensed and licence exempt frequency bands. Airspan obtained spectrum rights of use for 25 MHz in the rural regions and 60 MHz in the cities;
- Vodafone Ireland Ltd, a mobile network operator obtained 85 MHz in rural regions and 105 MHz in the cities;
- Three Ireland Hutchison Ltd, obtained 100 MHz nationally;
• Meteor Mobile Communications Ltd, obtained 80 MHz in the rural regions and 85 MHz in the cities.

3.1.15. Italy

5G for Italy, 2016, 5G strategy, pushed by TIM, around identified cities and application areas.

Trial licences and trial cities, mid-2017

Bari-Matera plan, 2017

700 MHz/3.5 GHz auctions in November 2018, 26 GHz spectrum auctions, October 2018, first in Europe.

The Italian 5G strategy kick-started late in 2016 when the domestic NRA announced the start of a fact-finding survey for the development of mobile and wireless systems towards the 5G and the utilization of the spectrum above 6 GHz.

In March 2017, the Government selected five 5G trial cities, including Milan (Vodafone), Prato (Wind Tre-Open Fiber), L’Aquila (Wind Tre-Open Fiber), Bari and Matera (Telecom Italia-Fastweb-Huawei Technologies), that will use 100 MHz of 3.6-3.8 GHz spectrum. Provisional licences are valid from September 2017 to 2020.

At year-end 2017, the “Bari-Matera plan” involving MNOs, cities, research centers and equipment vendors was unveiled and began. The 60 MEUR over four years (2018-2021) plan gathers 55 partners including seven universities and research centers, public interest communities, vertical leaders, start-ups and telecom players (TIM, Fastweb, Huawei). The plan focuses on ten application areas including media/virtual reality, smart port, smart city, smart agriculture, public safety, industry 4.0, health 5.0, road safety, tourism and culture, and environmental monitoring over 70 use cases.

In May 2018, the NRA announced 5G multi-band spectrum auctions (700 MHz, 3.6-3.8 GHz and 26 GHz). 700 MHz and 26 GHz spectrum auctions ended respectively in September and October 2018. The five 26 lots of 26 GHz spectrum raised 167.3 million EUR. 700 MHz frequencies raised globally 2.04 billion EUR. The 3.6-3.8 GHz spectrum auction hit over 4 billion EUR.
Coverage obligations

To ensure widespread improvements in mobile coverage across the Italy, the Ministry of Economic Development, based on the national regulatory authority (AGCOM) rules, has established **coverage obligations for the 700 MHz FDD band and 3600-3800 MHz band**.

Concerning the **700 MHz FDD band**, the coverage obligations will require winning bidders to roll out improved mobile coverage of national population, tourist locations and main national road and rail transport routes.

700 MHz FDD

National population coverage

Within 36 months of the nominal availability of frequencies, each winning bidder has to reach at frequencies, the winning bidders have to least the coverage of 80% of the national collectively reach the coverage of **99.4% of the national population**. The new entrant has 12 months more to achieve the same coverage goal.

National road and rail transport routes coverage

Within 42 months of the nominal availability of frequencies, the winning bidders have to collectively cover all the main national road and rail transport routes.

Tourist locations coverage

Within 66 months from the creation of the lists of Italian tourist locations, each winning bidder is required to cover at least 90% of the tourist locations included in the list associated with the rights of use awarded; the new entrant has 12 months more to achieve the same coverage goal.
Concerning the **3600-3800 MHz band**, the coverage obligations will require **80 MHz** winning bidders to roll out improved mobile coverage in a mandatory list of municipalities. Within 90 days from the date of the award, the winning bidders have to submit a list of municipalities to be covered to the Ministry of Economic Development. Then, the winning bidders have **72 months** from the date of the award to provide on demand the 5G service in all municipalities of their mandatory list. The mandatory list has to include at least 10% of all Italian municipalities under 5,000 inhabitants. All Italian municipalities under 5,000 inhabitants out the mandatory lists are signed in a free list. Any subject, which is not an TLC operator, from 120 days from the award can declare to the Ministry its willingness to offer the service in a municipalities of free list, using leasing contract with 3600-3800 MHz winning bidders.

Finally concerning the **3600-3800 MHz band**, the coverage obligations will require **20 MHz** winning bidders to reach the coverage of **5% of the population of each Italian region**.

3.1.16. Latvia

100 MHz of 3.4-3.8 GHz frequencies partially auctioned off in November 2017. LMT obtained the two 50 MHz blocks (3400 MHz-3450 MHz and 3650 MHz-3700 MHz) for the reserve price of 250,000 EUR apiece. The concessions are valid for 10 years, from January 2019 to December 2028.

Remaining 50 MHz of 3.5 GHz spectrum auctioned off in September 2018. SPRK auctioned off 50 MHz of spectrum for 5G services at 3550-3600 MHz to Tele2 Latvia in September 2018. The auction raised 6.5 million EUR for a 10-year licence valid from January 1st, 2019.

3.1.17. Lithuania

RRT opened a public consultation on the use of 3.4-3.8 GHz and 3.8-4.2 GHz frequencies from April to May 2018. A second public consultation on the use of 3.4-3.8 GHz frequencies was issued between October and November 2018.

3.4-3.8 GHz frequencies are expected to be awarded in 2019. 700 MHz frequencies are expected to be awarded before 2022.

3.1.18. Luxembourg

5G Strategy, September 2018

Two public consultations have been launched on spectrum for 5G to date followed by the released of the Luxembourg 5G Strategy on September 13th, 2018.

Assignment of the 700 MHz and 3.6 GHz frequencies is scheduled for the second half 2019. The 26 GHz frequencies are expected to become available in the second half 2020.
3.1.19. Malta

In February 2017, the MCA revised its test and trial-licensing regime to further support the carriage of technology trials such as 5G and IoT. In November 2017, the MCA released an update of its strategy for 2018-2020. Main tasks include:

- Awarding 800 MHz and continuing process to clear 700 MHz band.
- Publishing and commencing implementation of the National Spectrum Management Strategy.
- Continuing scoping work on spectrum earmarked for 5G. v Managing information as the means to promote competition.
- Continue making the case for assumption of ex-post competition regulation powers.
- Maintaining the compliance framework set at safeguarding a competitive environment

In June 2018, the MCA released the National Roadmap for the UHF band between 470-790 MHz. The 700 MHz band will be made available for commercial WBB mobile services as from June 2021. The roadmap follows a public consultation held between April 23rd and May 22nd, 2018.

In December 2018, the MCA published a draft amending decision on “the assignment process for the 1.5 GHz band for terrestrial systems capable of providing electronic communications services in Malta” (MCA_D_17_2868).

3.1.20. Netherlands

Connectivity Action Plan, July 2018

A multi-band spectrum (700/1400/2100 MHz) auction is scheduled for 2019/2020.

3.1.21. Poland

5G Strategy for Poland, Jan. 2018

5G spectrum consultation, July 2018

A few trials to date

In January 2018, the Ministry of Digital Affairs opened a public consultation on the “5G strategy for Poland” until 11 February 2018. According to the document, Poland will launch 5G in 2020 with 700 MHz frequencies in at least one Polish city by year-end and transport routes will be covered by 2025. Frequencies in the 3.4-3.8 GHz and 26 GHz bands will be assigned in 2021. The 5G strategy for Poland steered by the Ministry of Digital Affairs will be funded by public and community funds until 2023. The Ministry of Digital Affairs will allocated 10-15 MPLN to digitalization until 2023. The Ministry aims at easing permission for installing parts of the networks (masts e.g.) and restrictions on electromagnetic emissions.

Between July and August 2018, UKE issued a consultation on frequencies for 5G covering 700 MHz, 3.4-3.6 GHz, 3.6-3.8 GHz and 26 GHz bands. It proposes the sale of spectrum in these bands. Parts of the bands are currently used for telecom and TV services. UKE considers reorganization and reallocation in all bands.
3.1.22. Portugal
A public consultation on spectrum for 5G was released between March and April 2018. Frequencies studied included 450/700/900/1500/1800/2100/2600/3600 MHz and 26 GHz frequencies.

In July 2018, ANACOM approved the 700 MHz band plan for 5G services. The 700 MHz will be freed up by June 2020. The release of the band will start in Q4 2019.

3.1.23. Romania
ANCOM launched a public consultation on 5G spectrum between May and June 2018.

In December 2018, the Romanian regulator, ANCOM, has issued a consultation about its action plan for 2019. ANCOM’s President, Sorin Grindeanu, said in a press release that its main project will be the auction of the 700 MHz, 800 MHz, 1500 MHz, 2.6 GHz, and 3.4 – 3.6 GHz bands for 5G services.

3.1.24. Slovakia
In April 2017, the regulator launched a public consultation on 26 GHz frequencies. As a result, 26 GHz frequencies are expected to be assigned after July 7, 2021.

3.6 GHz band

This frequency band has been assigned for fixed wireless broadband access so it is likely to be used for 4G and not for 5G.

RÚ completed the assignment of the 3.5 GHz frequency band (3.4-3.6 GHz) in 2016. Frequency licences were assigned through electronic auction to three operators for the whole country (O2 Slovakia, SWAN and Slovanet). These run until August 2025.

However, the assignment procedure for the 3.7 GHz frequency band (3.6-3.8 GHz) is still ongoing. RÚ has started the assignment process for the remaining frequencies in this band concerning two segments: the 3600-3640 MHz and the 3760-3800 MHz bands. Licences for these frequencies are granted locally at district level. The first tenders were published in August 2016 and November 2016; calls continue to be published and new licences to be issued for use of the 3.7 GHz (3.6-3.8 GHz) band throughout Slovakia. The assignment procedure is expected to be finished in 2017. The planned use of frequencies assigned in 3.4-3.8 GHz band is for fixed wireless broadband access.

3.1.25. Slovenia
In January 2017, the Slovenian Government and AKOS called for project applications for testing 5G. In the call, trial licenses in 3.4-3.8 GHz frequencies were proposed. In October 2018, a controversy emerged regarding the allocation of 5G testing frequencies in the 700 MHz and 3.5 GHz spectrum. The 700 MHz frequency band was granted until January 2019. The 3.4 to 3.8 GHz band was granted until May 2021.
In July 2017, a consortium on PPDR issues (5G PPDR) was created. The following organizations are participating in the initiative: Telekom Slovenije, Faculty of Electrical Engineering, Iskratel, Ericsson, Ministry of Internal Affairs – Police, the Ministry of Defence, Administration for Civil Protection and Disaster Relief, The Information Society Directorate of the Ministry of Public Administration, and AKOS.

Slovenia launched a public consultation for the assignment of spectrum in the 700 MHz band and in the 26 GHz for 4G and 5G services in 2017. Two blocks (56 MHz and 112 MHz) in the 26 GHz frequencies were awarded in January 2018. However they cannot be used for 5G services.

3.1.26. Spain
Early 5G 3.4-3.6 GHz spectrum assignment process took place in 2016. It is likely to be used for 4G.

The 3.6-3.8 GHz auction ended in July 2018 and will be used by 5G networks:

- Vodafone has eighteen 5 MHz blocks (€198.1m)
- Orange has twelve 5 MHz blocks (€132.1m)
- Telefonica has ten 5 MHz blocks (€107.4m)

The 700 MHz auction will be held in the first months of 2020.

The 5G process in Spain started in July 2017 when the Government opened a public consultation about the 5G National Plan consisting of 25 questions.

The 5G National plan 2018-2020 aims at “promoting the development and deployment of 5G technology” via the auction of spectrum in the 1.5 GHz and the 3.6 GHz bands in early 2018, and at “developing their infrastructures and telecommunications networks with a 5G platform”.

The Spanish government has allocated 1 MEUR to create a national 5G observatory in Barcelona, part of a project designed to boost the candidature of Barcelona as the European capital of 5G technological innovation. The observatory is part of the “5GBarcelona” joint initiative of the regional government of Catalonia with Barcelona City Hall, the Mobile World Capital Barcelona Foundation, the i2CAT Foundation, the CTTC (Centre Tecnologic de Telecommunication’s de Catalunya), Atos and the UPC (Universitat Politecnica de Catalunya).

5GBarcelona will develop a European 5G digital hub based on an open experimental infrastructure in the metropolitan area for validating 5G technologies and services. It will be an open innovation environment based on the collaboration between public and private institutions that will harmonize the ecosystem generated by the Mobile World Congress (MWC) and other technology fairs held in Barcelona. For this R&D&I programme, 500 KEUR were allocated during April-September 2017 to define the KPIs and challenges towards becoming an international digital hub.

The 3.6-3.8 GHz spectrum auction raised 438 MEUR end of July 2018.

The 700 MHz auction initially scheduled for spring 2019 was postponed late November 2018 to the first months of 2020.
3.1.27. Sweden

Broadband strategy paper

Nordic cooperation on 5G

Upcoming 5G spectrum auctions: preliminary study on 3.4-3.8 GHz and 24.25-27.5 GHz, May 2018

The 5G strategy in Sweden is based on the paper released in March 2017 entitled “A Completely Connected Sweden by 2025 – a Broadband Strategy”.

Trial licenses have been granted on a first-come first served basis, valid from 2017 until 31st December 2019. 200 MHz of spectrum was made available in the 3.4-3.6 GHz band and 1000 Hz in the 24.5-275 GHz band.

An auction of 700 MHz frequencies is scheduled in Q4 2018.

The Nordic countries signed a letter of intent in May 2018 to deepen cooperation on 5G.

3.1.28. UK

5G strategy for the UK, 2016

Group of 5G research centers

“5G Testbeds and Trials”, April 2018-March 2019

Statement on the review of spectrum used by fixed wireless services published in July 2018
5G was initiated in 2016 when the Government announced its National Productivity Investment Fund (NPIF) worth in total of 23 BGBP, of which 740 MGBP funded by the government aiming at 5G trials and full fiber deployment across the UK by 2020-2021. Projects must complete all grant-funded activities by 31 March 2019.

In July 2018, Ofcom decided to change the authorization approach for fixed wireless systems in the 64-66 GHz band to license exempt and to implement common technical conditions across the 57-71 GHz band for short range wideband data transmission systems and fixed wireless systems as follows:

1) For short range wideband data transmission
 a) Extension of the license exemption and technical conditions (from 57-666 GHz) up to 71 GHz
 b) Introduce new technical conditions to allow licence exempt use of lower power equipment operation in a fixed outdoor installation in the extended 57 - 71 GHz band.

2) For fixed wireless systems
 a) Extend the current license exemption (from 57.1-63.9 GHz) up to 70.875 GHz.
 b) Extend the current technical conditions (from 57.1-63.9 GHz) up to 70.875 GHz

In November 2018, the UK Government published the “National Infrastructure and Construction Pipeline” report for 2018. It gives an overview of investment (both public and private) that is underway or expected to be put toward 5G and full fibre (FTTP) between 2018/19 and 2020/21 (financial years). 6.85 billion GBP should be devoted to full fibre and 5G upgrades by 2021.

Figure 21: 5G timeline in the UK

Source: IDATE DigiWorld, as of 3 December 2018

3.4-3.8 GHz band

3400-3600 MHz auctioned in April 2018.
3.2. 5G strategy and pioneer bands follow-up

Table 12: 5G strategy and pioneer bands follow-up for EU-28 most advanced countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Frequency band</th>
<th>5G strategy published</th>
<th>Spectrum assigned</th>
<th>Availability for 5G use</th>
<th>Channel width</th>
<th>Coverage obligations</th>
<th>License duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>700 MHz</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>15 years</td>
</tr>
<tr>
<td></td>
<td>3.4-3.8 GHz</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>130 MHz</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 GHz</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>700 MHz</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>15 years</td>
</tr>
<tr>
<td></td>
<td>3.4-3.8 GHz</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>5 and 10 MHz</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 GHz</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>700 MHz</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4-3.8 GHz</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 GHz</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>700 MHz</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>15.5 years</td>
</tr>
<tr>
<td></td>
<td>3.4-3.8 GHz</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>20 MHz</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 GHz</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>200 MHz (3.6-3.8 GHz)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 GHz (26.5-27.5 GHz)</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>700 MHz</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4-3.8 GHz</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 GHz</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>700 MHz</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>21 years</td>
</tr>
<tr>
<td></td>
<td>3.4-3.8 GHz</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>5 and 10 MHz duplex</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 GHz</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>United</td>
<td>700 MHz</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td></td>
<td>×</td>
<td>Indefinite term</td>
</tr>
<tr>
<td>Kingdom</td>
<td>3.4-3.8 GHz</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>20, 40 and 50 MHz</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 GHz</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td></td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>
3.3. International developments/trials

USA, Japan, South Korea and China are the leading countries in terms of 5G readiness. A number of Gulf countries claim to the firsts to have launched 5G mid-2018:

- **China**: China Mobile is currently trialling 5G. It plans commercial launches by 2020. China Unicom and China Telecom are targeting 2020 for commercial services.

- **USA**: AT&T has suggested a commercial launch by the end of 2018. Verizon is expected to launch fixed wireless trials in 2018. T-Mobile plans to start deployments in 2019 with a nationwide deployment by 2020. Sprint is suggesting a commercial launch late in 2019.

- **Japan**: KDDI, Softbank and NTT DoCoMo are targeting commercial launch by 2020.

- **South Korea**: South Korean MNOs displayed 5G at the Winter Olympic Games. KT has brought forward plans for a commercial launch to 2019. SK Telecom is undertaking field trials. Commercial launch is planned for the second half of 2019.

- **Europe**: Commercial large-scale introduction is targeted for 2020. 5G coverage in main urban areas and transport routes is scheduled for 2025.

- **Gulf Countries**: Qatar and UAE both claim to be the world firsts to have launched 5G. Without any 5G device available, it appears to be a 5G infrastructure green light rather than a full commercial launch.

3.3.1. USA

The United States is a well advanced country in terms of 5G. The Federal Communications Commission (FCC) is pursuing a comprehensive wireless strategy. Clearing 11 GHz of high-band spectrum for 5G was one of its first actions in favor of 5G as early as 2016. In 2016, it announced a 400 million USD funding dedicated to research on 5G. It now intends to make more mid-band spectrum available.

Concerns about cyberattacks from China resulted with an attempt from the Trump administration to build a secure 5G network (possibly under government control). The FCC and the wireless industry have pushed these attempts back.

5G Americas is the strong arm of 5G at regional level (partnership agreements with major standardisation bodies and wireless entities).

Spectrum issues

The FCC voted in 2016 for the release and development of nearly 11 GHz of high-frequency spectrum intended to be used for fixed and mobile broadband bandwidth uses: 3.85 GHz to be assigned under licenses in the bands 27.5-28.35 GHz and 37-40 GHz and 7 GHz, under general authorization, in the band 64-71 GHz.

As the 24 & 28 GHz auction is about to be held (November 14th, 2018), the FCC is considering clearing mid-band spectrum.

- July 2016: the FCC made available a total of 10.85 GHz in the 28 GHz (27.5-28.35 GHz), 37 GHz (37-38.6 GHz), 39 GHz (38.6-40 GHz) and an unlicensed band at 64-71 GHz.

- November 2017: the FCC made available an additional 1700 MHz of high band spectrum for flexible terrestrial wireless use in the 24 GHz (24.25-24.45/24.74-25.25 GHz) and 47 GHz (47.2-48.2 GHz) bands.

- March 2018: the FCC announced that it would like to hold auctions of the 28 GHz and 24 GHz bands by the end of the year (November 2018 for the 28 GHz auction).
June 2018: the FCC voted to proceed with making the upper 26 GHz (25.25–27.5 GHz) and 42 GHz (42–42.5 GHz) bands available for 5G services, while examining further aspects of the bands already in the 5G pipeline. The auction for the 28 GHz spectrum (27.5-28.35 GHz) and 24 GHz spectrum (24.25-24.45-24.75-25.25 GHz) is scheduled to begin on November 14, 2018.

July 2018: the FCC is considering options for up to 500 MHz of spectrum in the 3.7-4.2 GHz frequencies. Satellite companies currently use the frequencies.

3.3.2. China

Spectrum issues
MIIT (Ministry of Industry and Information Technology) has approved/reserved a number of bands for 5G:

- The 3.3-3.6 GHz is officially reserved. Trials were approved in the band in January 2016. The 3.3-3.4 GHz part is limited to indoor use.
- The 4.8-5 GHz is also reserved for 5G service, China has also solicited opinions on the 24.75-27.5 GHz) and 37-42.5 GHz bands. Trials were approved in the mm-wave frequencies in July 2017.

MIIT identified other bands for 5G:

- MIIT will likely free up the 3.6-4.2 GHz
- Lower frequencies (below 3 GHz were also mentioned for 5G, notably the 700 MHz band which has the largest spectrum band available. However, the 700 MHz spectrum is not available to China Unicom. MIIT might make available spectrum at 1 GHz or 2.5 GHz to Unicom. China Mobile will receive spectrum in the 4.8 GHz-5.0 GHz frequencies.

3.3.3. South Korea

In South Korea, the Korean Government (Ministry of Science, ICT and Future Planning) and the public-private partnership, 5G Forum, itself established in Seoul on 30 May 2013, defined the 5G mobile strategy as early as January 2014. For that purpose, the Government allocated 1.5 billion USD. The program of the 5G Forum (www.5gforum.org) runs over the seven-year period of 2014-2020 with a joint investment of 1.6 trillion KRW by both the Government and the private sector. Some 26 companies/institutions are part of the project comprised of private companies (operators, equipment vendors), research institutes and universities.

The South Korean carriers agreed mid-2018 to build single 5G network to save money and time. The government sees a 5G common launch in March 2019.

Spectrum issues
The government assigned 280 MHz of 3.4-3.7 GHz spectrum in June 2018 at 3.3 trillion KRW (2.4 billion EUR). Prices raised very high levels (more than 16 EUR per MHz per pop for 10 years). At the same time, the South Korean government assigned 2400 MHz (800 MHz for each player) of 28 GHz spectrum. Each player paid 160 million EUR for the 28 GHz spectrum.
3.3.4. Japan

The Radio Policy Vision Council of the MIC (Ministry of Internal Affairs and Communications) held in 2014 presented the roadmap for 5G. Following this report, the 5GMF (5G Mobile Forum) was established late in September 2014. Around 300 million USD have been dedicated by the Japanese authorities to promote the Industrial IoT and related technologies such as big data, artificial intelligence, and robotics. Japanese operators target the roll out 5G in time for hosting the Summer Olympic and Paralympic Games in August 2020.

Spectrum issues

Japan mainly supports the 28 GHz (27.5-29.5 GHz) band for 5G. The MIC has also approved the 3.6-4.2 GHz and the 4.4-4.9 GHz frequencies.

3.3.5. Other countries

Apart from the countries described above and the EU, other countries started planning 5G deployments such as India, Australia, Canada, South Africa, and the Gulf Countries (UAE, Qatar, Saudi Arabia).

India

The Indian government is strongly backing 5G deployment. Indian authorities established a 5G forum with a budget of approximately 76 million USD dedicated to 5G research and development.

The government launched two strategic initiatives to address these challenges: India’s Smart Cities Mission and Digital India. 5G will be central in achieving these government-backed initiatives that focus on easing the stress of urban population growth and closing the digital divide among the citizens from different social backgrounds.

India has significant infrastructure challenges that will limit 5G deployment, such as the lack of a robust network to connect cellular sub-networks to a core networks. The majority of mobile subscriptions are still 2G, and MNOs have already begun considering to leapfrog from 2G/3G directly to 5G.

A reasonable target for 5G launch is 2022.

The Department of Telecom (DoT) is harmonizing spectrum in the 3.3-3.6 GHz band and 26 GHz band, along with the 71-76 GHz, the 81-86 GHz and the 57-64 GHz frequencies as 5G candidate bands.

The DoT ordered operators to vacate spectrum in the 3.3-3.4 GHz range by the end of September 2018. In August 2018, the government and the regulator TRAI suggested a reserve price of 30% of 1800 MHz FDD band for the 3.3-3.6 GHz spectrum i.e. 985 INR per MHz (12.4 EUR) considering the 1800 MHz reserve price of 3285 INR. Mid-frequencies should be put for sale in 20 MHz blocks with a spectrum cap of 100 MHz per bidder.

Qatar

Ooredoo announced it launched its 5G commercial network in July 2018. Considering 5G mobile devices are not ready yet, it states it is waiting for manufacturers to produce 5G capable devices.
UAE

Du announced the rollout in 2018 of a limited service of 5G. Du's announcement follows rival Etisalat’s plans to roll out 5G commercial fixed devices in September 2018.

Saudi Arabia

The SA Kingdom has set up a national 5G task force to prepare the foundations for a large scale 5G rollout before the end of 2019,

Since May 2017, CITC (Communications and Information Technology Commission) awarded 160 MHz of additional IMT spectrum in 700 MHz, 800 MHz, and 1800 MHz bands to mobile operators Mobily, STC and Zain.

CITC issued testing licenses to all three operators in May 2018. The 3.6-3.8 GHz licenses allow the MNOs to test 5G with 100 MHz of spectrum between June 2018 and year-end 2019.
3.4. Number of cell sites for 5G trials

A number of mobile operators have already announced the number of 5G cell sites they are using or planning to use for their 5G trials.

Table 13: Number of cell sites for 5G trials

<table>
<thead>
<tr>
<th>Country</th>
<th>Operator</th>
<th>Number of 5G cell sites</th>
<th>Announcement date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>Vodafone</td>
<td>Setting up trial areas in seven cities and plans to expand to 1,000 sites by 2020</td>
<td>September 2018</td>
</tr>
<tr>
<td>Germany</td>
<td>Deutsche Telekom</td>
<td>Deutsche Telekom currently maintains about 28,000 towers across Germany, but the operator has formerly suggested that figure could even double with the rollout of 5G technology in the 2020s</td>
<td>February 2018</td>
</tr>
<tr>
<td>Germany</td>
<td>Deutsche Telekom</td>
<td>Wants to build over 2,000 new mobile sites every year along with 10,000 smaller radio cells to improve coverage at high-demand locations or inside buildings</td>
<td>October 2018</td>
</tr>
<tr>
<td>Italy</td>
<td>Vodafone</td>
<td>The 5G network in Milan covers 80% of the city’s population via 120 active sites</td>
<td>December 2018</td>
</tr>
<tr>
<td>UK</td>
<td>Vodafone</td>
<td>In 2018, will test 5G at more than 40 sites in Birmingham, Bristol, Cardiff, Glasgow, Liverpool, London and Manchester</td>
<td>June 2018</td>
</tr>
<tr>
<td>UK</td>
<td>EE/BT</td>
<td>Nine 5G trial sites are now live across East London. 1500 cell sites will be operating in 2019 covering 15% of the population (25% of total traffic)</td>
<td>November 2018</td>
</tr>
</tbody>
</table>

Source: IDATE
3.5. 5G network equipment –main manufacturers

3.5.1. Ericsson
Ericsson as well claim to offer the “Market first global 5G access and transport portfolio”, having created its Radio System as the basis for its future 5G offering including a transport and access solution. Ericsson put the stress on the smooth transition from 4G to 5G that its solution enables with notably a support for spectrum sharing between 4G and 5G. This solution brings increased flexibility for spectrum asset usage since it enables to deploy both 4G and 5G in the same spectrum, something particularly interesting at the beginning when 4G devices still account for the majority of the data traffic. With its 5G radio dot offering, Ericsson also emphasize the importance of indoor coverage and how its tiny base station fulfils the challenge of bringing 5G capacity indoor. A street macro solution and RAN compute portfolio has been announced for launch in the second half of 2019.

![Presentation of Ericsson 5G solution](source: Ericsson)

3.5.2. Huawei
In February 2018 at MWC in Barcelona, Huawei presented its end-to-end 5G solution including a 5G baseband for devices. Huawei claimed to be the only vendor to offer an end-to-end 5G solution at that time, covering sub 3 GHz frequency bands, C band as well as mm-wave band. Those products have been adapted to the different types of deployment likely to be used for 5G, with tower sites, pole sites and small cells and are accompanied by Active Antenna Units with up to 64T64R antenna elements.

3.5.3. Nokia
The AirScale Radio Access solution is the RAN equipment proposed by Nokia for 5G networks. It uses the ReefShark chipsets which decrease the size of massive MIMO antennas by 50%, and allow a 64% reduction in the power consumption of baseband units.
The Finnish manufacturer also proposes a cloud-native 5G core, the AirFrame data center solution, and mobile transport solutions.

3.5.4. Samsung

With 5G, Samsung has been much more vocal about its technological prowess than with 4G, touting a host of first with notably the first mm-wave Proof of Concept as early as in 2013 and the first field deployed 5G product in 2017. Samsung was notably involved in several demonstrations over the capabilities of mm-wave propagations in different environment (static, urban, different mobility scenario...).

If we exclude transport offering (microwave, optic fiber ...) Samsung has a complete 5G portfolio. It has notably developed a Fixed Wireless Access solution for the South Korean and American (Verizon) market.
3.5.5. **ZTE**

ZTE is seen as one of the leader in terms of 5G technology development, having received several awards for its pre-5G solutions notable. ZTE is notably known for working on applying 5G concepts on 4G commercial networks. This pre-5G solution support technologies such as Massive MIMO and Ultra Dense Network 5G technologies and combine them with LTE-Advanced Pro technologies such as Massive Carrier Aggregation, 256QAM, LAA, LWA and NB-IoT. This solution is also aimed at facilitating the future transition from 4G to 5G.

ZTE pre5G solution was commercially deployed in China, in Japan but also in Japan with Softbank. Softbank became the first operator to launch commercial Massive MIMO, a solution based on 8T8R antenna system enabling the reach of 1 Gbps throughput with two Carrier Components carrier aggregation. It was followed by Telkomsel in Indonesia. Massive MIMO trials with ZTE solutions were also carried out by Telefonica, H3G in Spain and Austria.

According to ZTE, the use of Massive MIMO with 4G network enables an increase of spectral efficiency up to 8 times.

ZTE has also developed a solution for massive Machine Type Communication with MUSA.